Optimization of high-voltage test transformer design
https://doi.org/10.30724/1998-9903-2025-27-3-69-81
Abstract
The paper considers the solution to the problem of multicriterial optimization of the high-voltage test transformer design using the NSGA-II algorithm. The optimization criteria are the mass of active materials, losses, and the ratio of the capacitance between the first and second layers of the secondary winding to the capacitance between the penultimate and last layers of the secondary winding. The calculation method for the transformer design used in the optimization is presented. An example of optimization of the high-voltage test transformer design is given. It is shown that the use of the NSGA-II algorithm made it possible to significantly reduce the mass of active materials and losses in the transformer compared to the basic version calculated using the traditional method.
About the Authors
N. V. KorovkinRussian Federation
Nikolay V. Korovkin
St. Petersburg
L. I. Sakhno
Russian Federation
Liudmila I. Sakhno
St. Petersburg
E. D. Paramonov
Russian Federation
Evgenii D. Paramonov- design engineer, LLS “Mars-energo SK”
St. Petersburg
O. I. Sakhno
Russian Federation
Olga I. Sakhno
St. Petersburg
References
1. Korovkin N.V., Markov M.A. Optimizaciya parametrov turbogeneratora tvv-360 po vektornomu kriteriyu. Izvestiya Rossijskoj akademii nauk. Energetika. 2020. № 4. S. 49-54.
2. Korovkin N.V., Gulaj S.L., Verhovcev D.A. Optimizaciya parametrov gidrogeneratora. Izvestiya Rossijskoj akademii nauk. Energetika. 2019. № 4. S. 42-50
3. Kovbasa V.D., Korovkin N.V. Minimizaciya otklonenij napryazhenij uzlov i poter' v energosisteme na osnove mnogokriterial'noj optimizacii. Izv. NTC Edinoj energeticheskoj sistemy. 2023. № 2 (89). S. 31-38.
4. Ahmed M.K., Osman M.H., Korovkin N.V. Multiobjective optimization of power flow distribution in eps with res under minimum number of transformer’s on-load tap changing. Elektrichestvo. 2022. № 5. С. 10-20
5. Belyaev N.A., Gur'eva A.Yu., Korovkin N.V., Olejnik N.A. Formirovanie racional'noj perspektivnoj struktury EES Rossii na osnove mul'tikriterial'noj optimizacii. Izv. NTC Edinoj energeticheskoj sistemy. 2024. № 1 (90). S. 5-19.]
6. M. H. Hashemi, U. Kiliç and S. Dikmen, "Applications of Novel Heuristic Algorithms in Design Optimization of Energy-Efficient Distribution Transformer," in IEEE Access, vol. 11, pp. 15968-15980, 2023, doi: 10.1109/ACCESS.2023.3245327.
7. O. Olowu, H. Jafari, M. Moghaddami and A. I. Sarwat, "Multiphysics and Multiobjective Design Optimization of High-Frequency Transformers for Solid-State Transformer Applications," in IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 1014-1023, Jan.-Feb. 2021, doi: 10.1109/TIA.2020.3035129.
8. K. Zhang, W. Chen, X. Cao, Z. Song, G. Qiao and L. Sun, "Optimization Design of High-Power High-Frequency Transformer Based on Multi-Objective Genetic Algorithm," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018, pp. 1-5, doi: 10.1109/PEAC.2018.8590371
9. S. Mohammed and R. A. Vural, "NSGA-II+FEM Based Loss Optimization of Three-Phase Transformer," in IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 7417-7425, Sept. 2019, doi: 10.1109/TIE.2018.2881935.
10. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002, doi: 10.1109/4235.996017
11. Ding, C. Yang and B. Xiong, "Multi-Objective Optimal Design of Traction Transformer Using Improved NSGA-II," 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, Republic of, 2021, pp. 1470-1474, doi: 10.23919/ICEMS52562.2021.9634516.
12. Tihomirov P. M. Raschet transformatorov. Uchebnoe posobie dlya vuzov. M: Energiya. 1974, 544 s.
13. G.N. Petrov. Elektricheskie mashiny. Chast' pervaya. Vvedenie. Transformatory. M: Energiya. 1974, 240 s.
14. Kalinin E.V. Modelirovanie poter' v shihtovannyh serdechnikah silovyh transformatorov//Intellektual'naya elektrotekhnika.-2020-№1(9).-S.52-68.
15. Wang K. et al. Fast Calculation Method of Magnetic field in Transformer Core Based on Magnetic Circuit Modeling //Annual Conference of China Electrotechnical Society. – Singapore: Springer Nature Singapore, 2023. – С. 604-616.
16. L. Lu, Y. Che, X. Wu, G. Li, Z. Yang and L. Zhu, "Magnetic Field Calculation of Distribution Transformer with Finite Element Method," 2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT), Chongqing, China, 2021, pp. 585-588, doi: 10.1109/ICESIT53460.2021.9696770.
17. Sakhno L. I. et al. Transformer under load condition: comparison of FEA and equivalent circuit analysis //Тезисы доклада на XXV международном симпозиуме « Электромагнитные явления в нелинейных цепях » 2018. – Т. 26. – С. 18-28.
18. L. Sakhno O. Sakhno, E. Kharlamova Calculation and Measurement of the Magnetic Flux in the Magnetic Core of Welding Transformers International Journal of Applied Engineering Research (IJAER), 2016, vol.11, No.22, pp. 11055-11059
19. P. Zhihua et al., "Three-dimensional Leakage Magnetic Field Simulation and Short-circuit Impedance Calculation of Large Yoke Transformer," 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 2021, pp. 479-482, doi: 10.1109/ICICAS53977.2021.00105.
20. Sahno L.I., Paramonov E.D., Sahno O.I., Kochetkova E.Yu., Minevich T.G. Vybor analiticheskogo metoda rascheta induktivnosti rasseyaniya pri optimizacii konstrukcii vysokovol'tnogo ispytatel'nogo transformatora. Izvestiya vysshih uchebnyh zavedenij. PROBLEMY ENERGETIKI. 2024;26(6):81-93. https://doi.org/10.30724/1998-9903-2024-26-6-81-93
21. Usachev A.E. Ispytatel'nye i elektrofizicheskie ustanovki vysokogo napryazheniya: poluchenie vysokih napryazhenij: ucheb. posobie / A.E. Usachev. – Kazan': Kazan. gos. energ. un-t, 2014. – 103 s.
Review
For citations:
Korovkin N.V., Sakhno L.I., Paramonov E.D., Sakhno O.I. Optimization of high-voltage test transformer design. Power engineering: research, equipment, technology. 2025;27(3):69-81. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-3-69-81