Ways to improve voltage stability in the power supply system of industrial enterprises
https://doi.org/10.30724/1998-9903-2025-27-3-82-101
Abstract
The growth of modern industry directly connects to the introduction of a wide variety of electrical apparatus and complex electronic devices. This growth inevitably leads to a significant increase in electricity consumption. As a result, industrial facilities require an uninterrupted power supply. Voltage sags present a serious obstacle in this process, causing disruptions in operations and equipment failures, which can lead to costly downtimes and increased maintenance expenses.
Objective. This study aims to analyze the issue of ensuring voltage stability at industrial enterprises in the context of voltage sags.
Methods. The research includes an overview of existing engineering measures designed to neutralize voltage sags. These measures encompass both hardware solutions, such as UPS systems and voltage regulators, and software strategies that monitor and manage electrical loads.
Results. The article discusses the relevance of the topic, defines voltage sags, and outlines the main characteristics of this phenomenon, including depth and duration. The analysis presents data on the primary causes and effects of voltage sags at various enterprises. It evaluates available means and methods for minimizing the impact of voltage sags on technological processes, thereby enhancing operational efficiency.
Conclusion. Each method for addressing voltage sags comes with its own advantages and disadvantages. Moreover, some methods influence the depth of the failure while others affect its duration. Users should justify the choice of method based on the specific requirements of each electrical system, ensuring compatibility with other technological processes during the design phase. By thoughtfully applying these strategies, businesses can enhance their operational resilience against voltage disturbances.
About the Authors
L. T. TukhvatullinRussian Federation
Leonid T. Tukhvatullin
Kazan
R. G. Isakov
Russian Federation
Ruslan G. Isakov
Kazan
References
1. Suslov K.V., Solonina N.N., Solonina Z.V., Akhmetshin A.R. Operational determination of the point of a short circuit in power lines. Power engineering: research, equipment, technology. 2023;25(2):71-83. (In Russ.) https://doi.org/10.30724/1998-9903-2023-25-2-71-83
2. Motoki, É. M., Filho, J. M. d. C., da Silveira, P. M., Pereira, N. B., & de Souza, P. V. G. (2021). Cost of Industrial Process Shutdowns Due to Voltage Sag and Short Interruption. Energies, 14(10), 2874. https://doi.org/10.3390/en14102874
3. Shpiganovich A.N., Shpiganovich A.A., Zatsepina V.I., Zatsepin E.P. State of the issue of the power supply system's reliability. Mining Science and Technology (Russia). 2017;(3):47-79. (In Russ.) https://doi.org/10.17073/2500-0632-2017-3-47-73
4. Artsishevskii YaL. Tekhperevooruzhenie releinoi zashchity i avtomatiki sistem elektrosnabzheniya predpriyatii nepreryvnogo proizvodstva. Moscow: NTF "Energoprogress"; 2011. (In Russ).
5. Khamidulin RR. Primenenie sovremennykh tekhnologii avtomatizatsii v setyakh elektrosnabzheniya liteinogo proizvodstva. Academy. 2019; 41(2):32-33. (In Russ).
6. Fetisov L.V., Rozhencova N.V., Bulatov O.A. IMPROVING THE QUALITY OF ELECTRIC POWER IN LOW VOLTAGE NETWORKS. Power engineering: research, equipment, technology. 2018;20(11-12):99-106. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-11-12-99-106
7. Balabanov AM, Mitrofanov SV. Analiz effektivnosti sistem STATKOM v zadachakh povysheniya kachestva elektroenergii gornodobyvayushchego predpriyatiya. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2023; 15(57(1)):68-79. (In Russ).
8. Shklyarskii YaE, Bardanov AI. Opredelenie napryazheniya zvena postoyannogo toka chastotnogo elektroprivoda pri provalakh napryazheniya. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2017; 12(2):447-456. (In Russ).
9. Molnar-Matei F., Sorandaru C. LabVIEW implementation of tracking filters for voltage dip detection. IEEE EuroCon. 2013. pp. 897-902. doi: 10.1109/EUROCON.2013.6625089.
10. Smykov YuN, Kislitsin EYu, Ivanov MN. Upravlenie protsessami sistemy elektrosnabzheniya silovykh elektropriemnikov pri provale napryazheniya. Uspekhi kibernetiki. 2024; 5(1):61-68. (In Russ). doi: 10.51790/2712-9942-2024-5-1-08.
11. Sattarov R.R., Garafutdinov R.R. Research of the operation of a group of asynchronous motors at short-term voltage slopes for the conditions of the oil industry. Power engineering: research, equipment, technology. 2020;22(6):92-100. (In Russ.) https://doi.org/10.30724/1998-9903-2020-22-6-92-100
12. Chervonchenko S.S., Frolov V.Ya. Research of the operation of an autonomous electrical complex with a combined composition of backup power sources. Power engineering: research, equipment, technology. 2022;24(4):90-104. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-4-90-104
13. Khaleel, M., Yusupov, Z., Elmnifi , M., Elmenfy , T., Rajab , Z., & Elbar, M. (2023). Assessing the Financial Impact and Mitigation Methods for Voltage Sag in Power Grid. Int. J. Electr. Eng. And Sustain., 1(3), 10–26. Retrieved from https://ijees.org/index.php/ijees/article/view/40 Accessed: 16 Jan 2025.
14. Almeida D., Cebrian J. Effects of Voltage Sags on Industrial Processes: Case Study. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2021, pp. 565–573. doi:10.46254/sa02.20210301
15. Kornilov G. P., Kovalenko A. Yu., Nikolaev A. A. Ogranichenie provalov napryazheniya v sistemakh elektrosnabzheniya promyshlennykh predpriyatii. Elektrotekhnicheskie sistemy i kompleksy. 2014; 23(2): 44-48. (In Russ).
16. Gurevich Yu. E., Kabikov K. V. Osobennosti elektrosnabzheniya, orientirovannogo na bespereboinuyu rabotu promyshlennogo potrebitelya. Moscow: Eleks-KM; 2005. (In Russ).
17. Bogdanov I. A., Senchilo N. D. Avtomaticheskaya sistema kompensatsii provalov napryazheniya v elektroenergeticheskikh sistemakh sudov s elektrodvizheniem. Morskie intellektual'nye tekhnologii. 2020; 49(3-1): 212-218. (In Russ). DOI 10.37220/MIT.2020.49.3.028.
18. Ershov S. V., Pigalov M. S. Analiz sredstv i sposobov ogranicheniya vliyaniya provalov napryazheniya. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2017. 12(1):95- 104. (In Russ).
19. Sharma S. et al., A Comprehensive Review on STATCOM: Paradigm of Modeling, Control, Stability, Optimal Location, Integration, Application, and Installation. IEEE Access. 2024. vol. 12, pp. 2701-2729. doi: 10.1109/ACCESS.2023.3345216.
20. Liang X. et al. Improved Hybrid Reactive Power Compensation System Based on FC and STATCOM and Its Control Method. Chinese Journal of Electrical Engineering. 2022. Vol. 8, no. 2, pp. 29-41. doi: 10.23919/CJEE.2022.000012.
21. Savina N.V., Lisogurskiy I.A., Lisogurskaya L.N. Selection of circuit and technical solutions for improvement the quality of electricity in adaptive networks with traction AC power. Power engineering: research, equipment, technology. 2022;24(3):42-54. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-3-42-54
22. Ivanov I.Yu., Novokreshchenov V.V., Ivanova V.R. Current state of the problems of functioning of relay protection and automation complexes used in an active adaptive network. Power engineering: research, equipment, technology. 2022;24(6):102-123. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-6-102-123
23. Dilshad S., Abas N., Farooq H., et al. NeuroFuzzy Wavelet Based Auxiliary Damping Controls for STATCOM. IEEE Access. 2020. 8:200367-200382. doi: 10.1109/ACCESS.2020.3031934.
24. Qingguang Y., Pei L., Wenhua L. and Xiaorong X.. Overview of STATCOM technologies. 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings, Hong Kong, China, 2004, pp. 647-652 Vol.2, doi: 10.1109/DRPT.2004.1338063.
25. Hamdan I., Ibrahim A.M.A. and Noureldeen O. Modified STATCOM control strategy for fault ride-through capability enhancement of grid-connected PV/wind hybrid power system during voltage sag. SN Appl. Sci. 2, 364 (2020). https://doi.org/10.1007/s42452-020-2169-6
26. Sharma V., Chandrakar V. Power Quality Enhancement by minimizing the effect of Voltage Sag in Non-linear Load Using D-STATCOM. Journal of Physics: Conference Series. 2022. 2325. 012019. 10.1088/1742-6596/2325/1/012019.
27. Du Z., Chen Z., Dai G., et al. Influence of DVR on Adjacent Load and Its Compensation Strategy Design Based on Externality Theory. Energies 2019, 12, 3716. https://doi.org/10.3390/en12193716
28. Umetaliev S. D., Galbaev Zh. T., Borukeev T. S., Galbaev A. Zh. Povyshenie kachestva stabilizatsii vykhodnykh parametrov istochnika bespereboinogo pitaniya dlya vetroustanovok. Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova. 2024; 71(3):978-983. (In Russ) doi: 10.56634/16948335.2024.2.978-983
29. Oliveira T., Caseiro L., Mendes, A., Cruz S., Perdigão M. Model Predictive Control for Paralleled Uninterruptible Power Supplies with an Additional Inverter Leg for Load-Side Neutral Connection. Energies 2021, 14, 2270. https://doi.org/10.3390/en14082270
30. Gurevich V. Istochniki bespereboinogo elektropitaniya: ustroistvo, printsipy deistviya i primenenie. Silovaya elektronika. 2012. Pt. 6, 39:63-70. (In Russ).
31. Caseiro L., Mendes A. Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control. Energies 2021, 14, 2210. https://doi.org/10.3390/en14082210
32. Pandian S. Voltage Sag Compensation in Fourteen Bus System Using IDVR. International Journal of Engineering and Technology. 2017; 4. pp.183-186. https://www.irjet.net/archives/V4/i3/IRJETV4I338.pdf
33. Mbuli N. Dynamic Voltage Restorer as a Solution to Voltage Problems in Power Systems: Focus on Sags, Swells and Steady Fluctuations. Energies 2023, 16, 6946. https://doi.org/10.3390/en16196946
34. Ivkin O.N., Kireeva E.A., Pupin V.M. Primenenie dinamicheskikh kompensatorov iskazheniya napryazheniya s tsel'yu obespecheniya nadezhnosti elektrosnabzheniya potrebitelei. Glavnyi energetik 2006; 1: 28-31. (In Russ).
35. Fedotov A.I., Kuznetcov R.V., Fedotov E.A., Leuhin A.N. Effect of dynamic compensators voltage distortion on the power quality during faults on the electrical networks. Power engineering: research, equipment, technology. 2015;(3-4):36-41. (In Russ.) https://doi.org/10.30724/1998-9903-2015-0-3-4-36-41
36. Dai X., Ma X., Hu D., Duan J., Chen H. An Overview of the R&D of Flywheel Energy Storage Technologies in China. Energies 2024, 17, 5531. https://doi.org/10.3390/en17225531
37. Guorui R., Jinfu L., Jie W., et al. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Applied Energy. 2017; 204:47-65. 10.1016/j.apenergy.2017.06.098.
38. Samineni S., Johnson B.K., Hess H., Law J.D. Modeling and analysis of a flywheel energy storage system for Voltage sag correction. Industry Applications, IEEE Transactions on. 2006; 42: 42 - 52. 10.1109/TIA.2005.861366.
39. Nor Anwar I. B., Hussain M. N. M., Noor S. Z. M., et al. Micro-Grid of Batteray Energy Storage System (BESS) Design for Malaysia’s Net Energy Metering (NEM). E3S Web of Conferences. 2024; Vol. 473: p. 02001. doi 10.1051/e3sconf/202447302001
40. Lawder M. T. et al. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proceedings of the IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014, doi: 10.1109/JPROC.2014.2317451
41. Fedotov A.I., Bakhteev K.R. Vliyanie forsirovki vozbuzhdeniya sinkhronnykh mashin na uroven' ostatochnogo napryazheniya pri kratkovremennykh narusheniyakh elektrosnabzheniya. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2016;(7-8):64-71. https://doi.org/10.30724/1998-9903-2016-0-7-8-64-71. (In Russ).
42. Bakhteev K., Fedotov A, Misbakhov R. The improving efficiency of electric receivers on the industrial enterprises in case of short-term power outages. Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering (EPE). Ostrava. Czech Republic. 2019, pp. 347-352.
43. Gruntovich N. V., Kapanskii A. A., Pupin V. M., Safonov D. O., Fedorov O. V. Vliyanie rabotayushchikh dvigatelei na ostatochnye napryazheniya uzlov kompleksnoi nagruzki stantsii. Vestnik GGTU im. P.O. Sukhogo. 2021. 85(2). (In Russ).
44. Chervonenko A.P., Kotin D.A., Rozhko A.V. Load switching between main power grid to the backup grid by standard automatic transfer switch. Power engineering: research, equipment, technology. 2021;23(5):160-171. (In Russ.) https://doi.org/10.30724/1998-9903-2021-23-5-160-171
45. Khramshin T.R. Sposoby povysheniya ustoichivosti elektroprivodov nepreryvnykh proizvodstv pri provalakh napryazheniya. Vestnik YuUrGU. Seriya «Energetika». 2014; 14(2):80–87. (In Russ.)
46. Kornilov G.P., Khramshin T.R., Karandaeva O.I. Sposoby povysheniya ustoichivosti chastotnoreguliruemykh elektroprivodov pri narusheniyakh elektrosnabzheniya. Vestnik MGTU. 2011 Magnitogorsk: GOU VPO «MGTU» 4: 79–84. (In Russ.).
47. Jafary P., Supponen A., Salmenperä M., Repo S. Analyzing Reliability of the Communication for Secure and Highly Available GOOSE-Based Logic Selectivity. Security and Communication Networks. 2019, 9682189: 16. https://doi.org/10.1155/2019/9682189
48. Akulova, AS. Formirovanie soobshchenii na tsifrovykh podstantsiyakh. In: Akulova AS, Pecheritsa AS. XX Vserossiiskaya studencheskaya nauchno-prakticheskaya konferentsiya Nizhnevartovskogo gosudarstvennogo universiteta; 03–04 Apr 2018; Nizhnevartovsk, Russia. Nizhnevartovsk: Nizhnevartovskii gosudarstvennyi universitet, 2018. Pt. 1. pp. 425-428. (In Russ.).
49. Emel'yantsev A., Filin L. Linii 6–10 kV mezhdu elektrostantsiyami i energosistemoi. bystrodeistvuyushchaya logicheskaya zashchita. Novosti elektrotekhniki. 2021. 2(128)–3(129). Available at: http://www.news.elteh.ru/arh/2007/45/11.php. Accessed: 20 Jan 2025. (In Russ).
50. Isakov R.G., Garke V.G. Kontseptsiya razvitiya releinoi zashchity sistemy elektrosnabzheniya krupnogo promyshlennogo predpriyatiya. Izvestiya vysshikh uchebnykh zavedenii. PROBLEMY ENERGETIKI. 2012;(7-8):46-54. (In Russ.).
51. Davydov D.A., Kholmov M.A., Nikitin K.I., Kletsel' M.Ya. Sposob postroeniya zashchity linii s primeneniem standarta MEK 61850 na primere mikroprotsessornogo terminala Sepam serii 1000+. Omskii nauchnyi vestnik. 2024; 2(190):87–98. DOI:https://doi.org/10.25206/1813-8225-2024-190-87-98. (In Russ.).
52. Pfafenrot EV. Organizatsiya tsifrovoi logicheskoi zashchity elektroustanovok NPZ. Primery vnedreniya, perspektivy primeneniya. In: Pfafenrot EV. VII nauchno-prakticheskaya konferentsiya „Releinaya zashchita i avtomatizatsiya elektroenergeticheskikh sistem Rossii“; 18–21 Apr. 2023; Cheboksary, Russia. Cheboksary: Chuvashskii gosudarstvennyi universitet imeni I.N. Ul'yanova, 2023. pp. 143-147. (In Russ.).
53. Bollen M. H. J. et al. CIGRE/ CIRED/ UIE joint working group C4.110, voltage dip immunity of equipment in installations - Main contributions and conclusions. CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1. Prague, Czech Republic, 2009, pp. 1-4, doi: 10.1049/cp.2009.0584.
Review
For citations:
Tukhvatullin L.T., Isakov R.G. Ways to improve voltage stability in the power supply system of industrial enterprises. Power engineering: research, equipment, technology. 2025;27(3):82-101. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-3-82-101