Features of high-pressure water electrolysis in assessing the thermodynamic efficiency of combining nuclear power plants with a hydrogen complex
https://doi.org/10.30724/1998-9903-2025-27-4-104-122
Abstract
The Relevance of the study of combining nuclear power plants with the hydrogen complex is substantiated by the need to adapt nuclear power plants to variable energy consumption during the day in the conditions of their involvement in regulating the unevenness of daily schedules of electric load while maintaining the basic load.
Purpose. Assessment of the thermodynamic efficiency of combining a nuclear power plant with a hydrogen complex to cover the peak load in the power system, taking into account the features of the process of water electrolysis under high pressure.
Methods. Based on world experience, the mechanism of crosspenetration of hydrogen and oxygen, as well as solutions aimed at preventing this phenomenon, are analyzed. The assessment of the thermodynamic efficiency of combining NPPs with a hydrogen complex was carried out on the basis of a mathematical and thermodynamic model of the expanded thermal scheme of the NPP using the IAPWS-IF97 formulations.
Results. On the basis of the generalized analysis, the authors established and explained the regularity of the decrease in the efficiency of electrolysis with an increase in pressure due to the phenomenon of cross-penetration. Complex nomograms of the regularities of the influence of working pressure on the main characteristics of electrolysis, in particular, efficiency, specific consumption of electricity for hydrogen production, operating voltage on the cell, have been developed. It was obtained that the hydrogen complex based on high-pressure electrolysis turns out to be more efficient than the system using compressors in terms of the criteria for converting the using power into the peak power and the efficiency of the nuclear power plant.
Conclusions. The authors have developed and patented a new principle of combining nuclear power plants with a hydrogen complex based on high-pressure water electrolysis and shown its efficiency under the influence of crosspenetration of hydrogen and oxygen in comparison with the system when using compressor machines as part of a hydrogen complex.
About the Authors
A. N. BayramovRussian Federation
Artem N. Bayramov
Saratov
D. A. Makarov
Russian Federation
Daniil A. Makarov
Saratov
V. M. Sedelkin
Russian Federation
Valentin M. Sedelkin
Saratov
References
1. Energeticheskaya strategiya Rossii na period do 2035 g. / Pravitel'stvo Rossijskoj federacii. – Moskva, 2020 g. – 79 s.
2. Egorov AN, Bayramov AN. Elektroliz vody i obratimye toplivnye elementy – perspektivnye «zelenye» tekhnologii dlya vodorodnoj energetiki. Energobezopasnost' i energosberezhenie. 2023;№3(111):23-32.
3. Bayramov AN, Makarov DA. Vodorodnyj kompleks na osnove elektroliza vody vysokogo davleniya dlya kombinirovaniya s atomnoj stanciej. Patent RUS №2821330. 21.06.2024. Byul. № 18.
4. Bayramov AN, Makarov DA. Razrabotka i obosnovanie novogo principa kombinirovaniya AES s vodorodnym kompleksom. Al'ternativnaya energetika i ekologiya (ISJAEE). 2024; 5(422):30-50
5. Bayramov AN. Razrabotka nauchnyh osnov povysheniya effektivnosti AES pri kombinirovanii s vodorodnym kompleksom [dissertation]. Saratov; 2022.
6. Aminov RZ, Bayramov AN. Kombinirovanie vodorodnyh energeticheskih ciklov s atomnymi elektrostanciyami. Moscow: Nauka; 2016. (In Russ).
7. Schalenbach M, Carmo M, Fritz D, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy. 2013;38(35):14921-14933. doi: 10.1016/j.ijhydene.2013.09.013
8. Dang J, Li Y, Liu B, et al. Design and economic analysis of high-pressure proton exchange membrane electrolysis for renewable energy storage. International Journal of Hydrogen Energy. 2023;48(28):10377-10393. doi: 10.1016/j.ijhydene.2022.11.250
9. Sethuraman V, Weidner J, Haug A, et al. Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode: Effect of Humidity and Temperature. Journal of The Electrochemical Society. 2008;155(1). doi: 10.1149/1.2801980
10. Kopitzke R, Linkous C, Anderson R, et al. Conductivity and Water Uptake of Aromatic-Based Proton Exchange Membrane Electrolytes. Journal of The Electrochemical Society. 2000;147(5):1677-1681. doi: 10.1149/1.1393417
11. Slade S, Campbell S, Ralph T, et al. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. Journal of The Electrochemical Society. 2002;149(12):1556-1564. doi: 10.1149/1.1517281
12. Silva R, Francesco M, Pozio A. Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells. Journal of Power Sources. 2004;134(1):18-26. doi: 10.1016/j.jpowsour.2004.03.028
13. LaConti A, Liu H, Mittelsteadt C. Polymer electrolyte membrane degradation mechanisms in fuel cells – findings over the past 30 years and comparison with electrolyzers. ECS Transactions. 2006;1(8):199-219. doi: 10.1149/1.2214554
14. Millet P, Ngameni R, Grigoriev SA, et al. PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy. 2009;35(10):5043-5052. doi: 10.1016/j.ijhydene.2009.09.015
15. Grigoriev SA, Fateev VN, Bessarabov DG, et al. Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy. 2020;45(49):26036-26058. doi: 10.1016/j.ijhydene.2020.03.109
16. Yigit T, Selamet O. Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. International Journal of Hydrogen Energy. 2016;41(32):13901-13914. doi: 10.1016/j.ijhydene.2016.06.022
17. YAkimenko LM, Modylevskaya ID, Tkachek ZA. Elektroliz vody. Moscow: Himiya: 1970. (In Russ).
18. Bensmann B, Hanke-Rauschenbach R, Arias I, et al. Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies. Electrochimica Acta. 2013;110:570-580. doi: 10.1016/j.electacta.2013.05.102
19. Degiorgis L, Santarelli M, Cali M. Hydrogen from renewable energy: A pilot plant for thermal production and mobility. Journal of Power Sources. 2007;171(1):237-246. doi: 10.1016/j.jpowsour.2007.01.060
20. Marangio F, Santarelli M, Cali M. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy. 2009;34(3):1143-1158. doi: 10.1016/j.ijhydene.2008.11.083
21. Voloshchenko GN, Porembskij VI. Elektroliznaya ustanovka vysokogo davleniya. Patent RUS №2660902. 11.07.2018. Byul. № 20.
22. S'oli D. Elektrolizer vysokogo davleniya. Patent RUS №2496918. 27.10.2013 Byul. № 30.
23. Kim H, Park M, Lee K. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production. International Journal of Hydrogen Energy. 2013;38(6):2596-2609. doi: 10.1016/j.ijhydene.2012.12.006
24. Ito H, Maeda T, Nakano A, et al. Properties of Nafion membranes under PEM water electrolysis conditions. International Journal of Hydrogen Energy. 2011;36(17):10527-10540. doi: 10.1016/j.ijhydene.2011.05.127
25. Zawodzinski T, Davey J, Valerio J, et al. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochimica Acta. 1995;40(3):297-302. doi: 10.1016/0013-4686(94)00277-8
26. Sartory M, Wallnöfer-Ogris E, Salman P, et al. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. International Journal of Hydrogen Energy. 2017;42(52):30493-30508. doi: 10.1016/j.ijhydene.2017.10.112
27. Grigoriev SA, Millet P, Korobtsev SV, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. International Journal of Hydrogen Energy. 2009;34(14):5986-5991. doi: 10.1016/j.ijhydene.2009.01.047
28. Dobrovol'skij YUA, Volkov EV, Pisareva AV, i dr. Protonoobmennye membrany dlya vodorodno-vozdushnyh toplivnyh elementov. Rossijskij himicheskij zhurnal (ZHurnal Rossijskogo himicheskogo obshchestva im. D. I. Mendeleeva). 2006;1(6):95-104
29. Klose C, Trinke P, Böhm T, et al. Membrane Interlayer with Pt Recombination Particles for Reduction of the Anodic Hydrogen Content in PEM Water Electrolysis. Journal of The Electrochemical Society. 2018;165(16). doi: 10.1149/2.1241814jes
30. Correa G, Marocco P, Muñoz P, et al. Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side. International Journal of Hydrogen Energy. 2022;47(7):4315-4327. doi: 10.1016/j.ijhydene.2021.11.097
31. Hancke R, Holm T, Ulleberg O. The case for high-pressure PEM water electrolysis. Energy Conversion and Management. 2022;261(115642). doi: 10.1016/j.enconman.2022.115642
32. Dang J, Zhang J, Deng X, et al. Hydrogen crossover measurement and durability assessment of high-pressure proton exchange membrane electrolyzer. Journal of Power Sources. 2023;563(232776). doi: 10.1016/j.jpowsour.2023.232776
33. Grigoriev SA, Porembskiy VI, Korobtsev SV, et al. High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy. 2011;36(3):2721-2728. doi: 10.1016/j.ijhydene.2010.03.058
34. Kuleshov NV, Grigor'ev SA, Kuleshov VN, i dr. Nizkotemperaturnye elektrolizery vody dlya avtonomnyh energoustanovok s vodorodnym nakopleniem energii. Al'ternativnaya energetika i ekologiya (ISJAEE). 2013;06/1(127):23-27
35. Hancke R, Bujlo P, Holm T, et al. High-pressure PEM water electrolyser performance up to 180 bar differential pressure. Journal of Power Sources. 2024;601(234271). doi: 10.1016/j.jpowsour.2024.234271
36. Hourng L, Tsai T, Lin M. The analysis of energy efficiency in water electrolysis under high temperature and high pressure. IOP Conference Series: Earth and Environmental Science. International Conference on New Energy and Future Energy System (NEFES 2017), Kunming, China. 22-25 Sep 2017. doi: 10.1088/1755-1315/93/1/012035
37. Bayramov AN. Programma vychisleniya tekhniko-ekonomicheskoj effektivnosti ispol'zovaniya vodorodnyh nadstroek na AES. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM №2013660650. Zaregistrirovano v Reestre programm dlya EVM 14 noyabrya 2013 g.
38. Holm T, Borsboom-Hanson T, Herrera O, et al. Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management. 2021;237(114106). doi: 10.1016/j.enconman.2021.114106
39. Hamdan M. High Pressure PEM Electrolysis: Status, Key Issues, and Challenges. In: Electrolytic Hydrogen Production Workshop NREL, Golden, Colorado. 27-28 Feb 2014. Available at: https://www.energy.gov/sites/default/files/2014/08/f18/fcto_2014_electrolytic_h2_wkshp_hamdan1.pdf
Review
For citations:
Bayramov A.N., Makarov D.A., Sedelkin V.M. Features of high-pressure water electrolysis in assessing the thermodynamic efficiency of combining nuclear power plants with a hydrogen complex. Power engineering: research, equipment, technology. 2025;27(4):108-126. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-4-104-122