Preview

Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ

Расширенный поиск

Оптимизация планирования микросетей: современные подходы и перспективы

https://doi.org/10.30724/1998-9903-2025-27-5-130-152

Аннотация

АКТУАЛЬНОСТЬ. В данной статье представлен обзор современных подходов к оптимизации планирования микросетей, включая методы многоцелевой оптимизации, учет неопределенностей и применение интеллектуальных алгоритмов. Микросети, как ключевой элемент современных энергетических систем, объединяют распределенные источники энергии, устройства накопления и нагрузки, что позволяет повысить эффективность, надежность и экологичность энергоснабжения. МЕТОДЫ. В работе рассмотрены основные модели оптимизации, такие как минимизация эксплуатационных затрат, снижение выбросов и повышение надежности электроснабжения. Особое внимание уделено методам учета неопределенностей, связанных с возобновляемыми источниками энергии и нагрузкой, а также роли систем накопления энергии и управления спросом. В статье также анализируются традиционные и интеллектуальные алгоритмы оптимизации, включая генетические алгоритмы, методы роя частиц и глубокое обучение. РЕЗУЛЬТАТЫ. Применение современных моделей, таких как SRSM-SOCR, модифицированный алгоритм Bet (MBA), глубокое обучение с подкреплением (DRL) и глубокая рекуррентная нейронная сеть (DRNN), позволило достичь сокращения эксплуатационных издержек микросетей на 18-25%, увеличения доли генерации из возобновляемых источников до 70-75% и снижения выбросов CO₂ до 60%. Также представлены реальные примеры внедрения микросетей в Германии и Греции, подтверждающие эффективность указанных подходов. ЗАКЛЮЧЕНИЕ. На основе анализа литературы выделены ключевые направления для будущих исследований, такие как интеграция миграционного обучения и глубокого обучения с подкреплением для повышения адаптивности моделей. Результаты исследования могут быть полезны для разработки эффективных стратегий управления микросетями в условиях растущей доли возобновляемых источников энергии и изменяющихся требований к энергосистемам.

Об авторах

С. Чэнь
Уральский федеральный университет имени первого Президента России Б. Н. Ельцина (УрФУ)
Россия

Чэнь Сяоюй – аспирант, кафедра атомных станций и возобновляемых источников энергии

г. Екатеринбург



Я. Ду
Уральский федеральный университет имени первого Президента России Б. Н. Ельцина (УрФУ)
Россия

Ду Ян – аспирант, кафедра атомных станций и возобновляемых источников энергии

г. Екатеринбург



Л. Цинь
Уральский федеральный университет имени первого Президента России Б. Н. Ельцина (УрФУ)
Россия

Цинь Лисун – аспирант, кафедра атомных станций и возобновляемых источников энергии

г. Екатеринбург



В. И. Велькин
Уральский федеральный университет имени первого Президента России Б. Н. Ельцина (УрФУ)
Россия

Велькин Владимир Иванович – д-р техн. наук, профессор, кафедра атомных станций и возобновляемых источников энергии

г. Екатеринбург



Список литературы

1. Гуломзода А.Х., Сафаралиев М.Х., Люханов Е.А. Модифицированный способ синхронизации Microgrid свнешней изолированной энергосистемой // Электротехнические системы и комплексы. 2021. № 3(52). С. 72-80. Doi:10.18503/2311-8318-2021-3(52)-72-80

2. Gu W., Wu Z., Bo R., et al. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review // International Journal of Electrical Power & Energy Systems. 2014. Vol. 54. pp. 26-37. Doi: 10.1016/j.ijepes.2013.06.028

3. Upasana L., Nasreen B., Irraivan E., et al. An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids // Mathematics. 2023. Vol. 11, N9. 2079. Doi: 10.3390/math11092079

4. Seddaoui N., Boulouma S., Rahmani L. A hybrid Improved Salp Swarm Algorithm and Harris Hawk Optimizer for energy planning in microgrids with minimum operating cost // International Journal of Green Energy. 2024. Vol. 22, N1. pp. 72–89. Doi: 10.1080/15435075.2024.2406844

5. Wu X., Shan Y., Fan K. A Modified Particle Swarm Algorithm for the Multi-Objective Optimization of Wind/Photovoltaic/Diesel/Storage Microgrids // Sustainability. 2024. Vol. 16, N03. 1065. Doi: 10.3390/su16031065

6. Zhu X., Peng C., Geng H. Multi-Objective Sizing Optimization Method of Microgrid Considering Cost and Carbon Emissions // 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China. 2022. pp. 2278-2283. Doi:10.1109/SPIES55999.2022.10082041.

7. Wang X., Wang S., Ren J., et al. Optimizing Economic Dispatch for Microgrid Clusters Using Improved Grey Wolf Optimization // Electronics. 2024. Vol. 13, N16. 3139. Doi: 10.3390/electronics13163139

8. Dong A., Lee S-K. The Study of an Improved Particle Swarm Optimization Algorithm Applied to Economic Dispatch in Microgrids // Electronics. 2024. Vol. 13, N20. 4086. Doi: 10.3390/electronics13204086

9. Rajagopalan A., Nagarajan K., Montoya O. D., et al. Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer // Energies. 2022. Vol. 15, N23. 9024. Doi:10.3390/en15239024

10. Maël R., Florian D., Dominique G., et al. Multi-Objective Optimization of Autonomous Microgrids with Reliability Consideration // Energies. 2021. Vol. 14, N15. 4466. Doi: 10.3390/en14154466

11. Younes Z., Alhamrouni I., Mekhilef S., et al. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid // Ain Shams Engineering Journal. 2021. Vol. 12, N2. pp. 1985–1994. Doi: 10.1016/j.asej.2020.10.021

12. Karthik N., Rajagopalan A., Bajaj M. et al. Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems // Scientific Reports. 2024. Vol. 14. 18997. Doi: 10.1038/s41598-024-69734-4

13. Yang X., Leng Z., Xu S., et al. Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method // Renewable Energy. 2021. Vol.172. pp. 408-423. Doi: 10.1016/j.renene.2021.02.165

14. Zhao G., Luo J., Song N., et al. Multi-objective optimal dispatch of island microgrid considering a novel scheduling resource // Electric Power Systems Research. 2025. Vol.241:111378. Doi:10.1016/j.epsr.2024.111378

15. Ren Z., Qu X., Wang M., et al. Multi-Objective Optimization for DC Microgrid Using Combination of NSGA-II Algorithm and Linear Search Method // IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2023. Vol. 13, N3. pp. 789-796. Doi:10.1109/JETCAS.2023.3284061.

16. Huang Y., He G., Pu Z., et al. Multi-objective particle swarm optimization for optimal scheduling of household microgrids // Front. Energy Res. 2024. Vol. 11. 1354869. Doi:10.3389/fenrg.2023.1354869

17. Alabdullah M.H., Abido M. A. Microgrid energy management using deep Q-network reinforcement learning // Alexandria Engineering Journal. 2022. Vol. 61, N11. pp. 9069-9078. Doi: 10.1016/j.aej.2022.02.042

18. Nguyen Q. M., Nguyen D. L., Nguyen T. K. A mixed-integer linear programming model for microgrid optimal scheduling considering BESS degradation and RES uncertainty // Journal of Energy Storage. 2024. Vol. 104. Pt. B. 114663. Doi: 10.1016/j.est.2024.114663

19. Amirhossein B., Hamidreza A., Somayeh M. Day-ahead optimal scheduling of microgrid with considering demand side management under uncertainty // Electric Power Systems Research. 2022. Vol. 209. 107965. Doi: 10.1016/j.epsr.2022.107965

20. Tang W., Gao F. Optimal operation of household microgrid day-ahead energy considering user satisfaction // High Voltage Engineering. 2017. Vol. 43, N1. pp. 140-148. Doi: 10.13336/j.1003-6520.hve.20161227019

21. He L. Research on optimal scheduling of multi-microgrid economics considering peak shaving and valley filling strategies // Proceedings of Excellent Papers of Zhejiang Electric Power Society of China 2022 (Power Grid Technology). 2023. pp. 175-187.

22. Zhu L., Zhou X., Tang L., et al. Multi-objective optimal dispatch of microgrid using particle swarm optimization combined with bacterial foraging algorithm // Power System Technology. 2017. Vol. 41, N6. pp. 1847-1854. Doi: 10.13335/j.1000-3673.pst.2016.2504

23. Xing Y., Liu L., Wang Y. An application model of multi-objective optimization algorithm // Success (Education Edition). 2011. N5. pp. 242. Doi: CNKI:SUN:CJJY.0.2011-05-211

24. Cao Z., Zhou L., Zhang Y., et al. Microgrid planning based on power supply reliability // Power System Protection and Control. 2015. Vol. 43, N14. pp. 6. Doi: JournalArticle/5b3bd98ec095d70f00940949

25. Xu Y., Ai Q. Coordinated optimal dispatch of active distribution network with microgrids // Electric Power Automation Equipment. 2016. Vol. 36, N11. pp. 18-26. Doi: 10.16081/j.issn.1006-6047.2016.11.003

26. Xu T., Ai Q. Coordinated optimal scheduling method for active distribution networks containing microgrids // Electric Power Automation Equipment. 2016. Vol. 36, N11. pp.18-26. Doi: 10.16081/j.issn.1006-6047.2016.11.003

27. Yu Z., Guo L., Liu W., et al. Stochastic optimal planning software for stand-alone microgrids and its implementation // Power System Automation. 2015. Vol. 39, N6. pp. 18-23. Doi: 10.7500/AEPS20140207002

28. Tong N., Li Y., Shen H., et al. Optimal scheduling of microgrids based on improved black hole algorithm // Journal of Power Science and Technology. 2021. Vol. 36, N05. pp.113-119. Doi: 10.19781/j.issn.1673-9140.2021.05.014

29. Li J., Yuan M. Green Energy Town Construction in Germany: Ideas, Strategies and Experiences // Journal of Shandong University of Science and Technology: Social Sciences. 2015. Vol. 17, N6. Doi: 10.16452/j.cnki.sdkjsk.20151225.010

30. Christie A. German Village Achieves Energy Independence… And Then Some // BioCycle August 2011. 2011. Vol. 52, N8. pp.37.

31. Kaldellis J., Zafirakis D. Prospects and challenges for clean energy in European Islands.The TILOS paradigm // Renewable Energy. 2020. Vol. 145. pp.2489-2502. Doi: 10.1016/j.renene.2019.08.014

32. Notton G., Nivet M. -L., Zafirakis D., et al. Tilos, the first autonomous renewable green island in Mediterranean: A Horizon 2020 project // 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria. 2017. pp.102-105. Doi:10.1109/ELMA.2017.7955410.

33. Boulogiorgou D., Ktenidis P. TILOS local scale Technology Innovation enabling low carbon energy transition // Renewable Energy. 2020. Vol. 146. pp.397-403. Doi: 10.1016/j.renene.2019.06.130

34. Li W., Li E., Wang P. The Technical Status and Development Tendency of Microgrid // Telecom Power Technology. 2015. N05. pp: 202-207. Doi: CNKI:SUN:TXDY.0.2015-05-065

35. Zhu L., Zhou X., Tang L., et al. Multi-objective optimal operation for microgrid considering interruptible loads // Power System Technology. 2017. Vol. 41, N6. pp. 1847-1854. Doi: 10.13335/j.1000-3673.pst.2016.2504

36. Nikolaos E., Myronas G., Michael C. Optimal energy planning and scheduling of microgrids // Chemical Engineering Research and Design. 2018. Vol. 131, N03. pp. 318-332. Doi:10.1016/j.cherd.2017.07.030

37. Xue X., Ai X., Fang J., et al. Real-Time Schedule of Microgrid for Maximizing Battery Energy Storage Utilization // IEEE Transactions on Sustainable Energy. 2022. Vol. 13, N3. pp. 1356-1369. Doi:10.1109/TSTE.2022.3153609.

38. Moein B., Mona G. A Multi-Objective Optimization Scheme for Resilient, Cost-Effective Planning of Microgrids // IEEE Power & Energy Society General Meeting (PESGM). 2020. Vol. 8. pp. 206325-206341. Doi:10.1109/ACCESS.2020.3038133

39. Qiu Y., Li Q., Ai Y., et al. Optimal scheduling for microgrids considering long-term and short-term energy storage // Journal of Energy Storage. 2024. Vol 93. pp. 112-137. Doi: 10.1016/j.est.2024.112137

40. Lian Y., Li Y., Zhao Y., et al. Robust multi-objective optimization for islanded data center microgrid operations // Applied Energy. 2023. Vol. 330. 120344. Doi: 10.1016/j.apenergy.2022.120344

41. Zhu W., Guo J., Zhao G. Multi-Objective Dispatching Optimization of an Island Microgrid Integrated with Desalination Units and Electric Vehicles // Processes. 2021. Vol. 9, N5. 798. Doi: 10.3390/pr9050798

42. Huang Z., Xu L., Wang B., et al. Optimizing power systems and microgrids: A novel multi-objective model for energy hubs with innovative algorithmic optimization // International Journal of Hydrogen Energy. 2024. Vol. 69, N5. pp. 927-943. Doi: 10.1016/j.ijhydene.2024.04.341

43. Jhon M., Juan G., Oscar G., et al. Techno-economic approach for energy management system: Multi-objective optimization algorithms for energy storage in standalone and grid-connected DC microgrids // Journal of Energy Storage. 2024. Vol. 102. Pt. 1. 114069. Doi: 10.1016/j.est.2024.114069

44. Zhang Z., Wang Z., Wang H., et al. Research on Bi-Level Optimized Operation Strategy of Microgrid Cluster Based on IABC Algorithm // IEEE Transactions on Industrial Electronics. 2021. Vol.9. pp. 15520-15529. Doi: 10.1109/access.2021.3053122

45. Ren Z., Qu X., Wang M., et al. Multi-Objective Optimization for DC Microgrid Using Combination of NSGA-II Algorithm and Linear Search Method // IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2023. Vol. 13, N3. pp. 789-796. Doi:10.1109/JETCAS.2023.3284061.

46. Hou H., Xue M., Xu Y., et al. Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load // Applied Energy. 2020. Vol. 262. 114489. Doi: 10.1016/j.apenergy.2020.114489

47. Mei Y., Li B., Wang H., et al. Multi-objective optimal scheduling of microgrid with electric vehicles // Energy Reports. 2022. Vol.8. pp. 4512-4524. Doi: 10.1016/j.egyr.2022.03.131

48. Zhang Y., Lv Y., Zhou Y. Research on Economic Optimal Dispatching of Microgrid Based on an Improved Bacteria Foraging Optimization // Biomimetics. 2023. Vol. 8, N2. 150. Doi: 10.3390/biomimetics8020150

49. Premadasa P. N. D., Silva C. M. M. R. S., Chandima D. P., et al. A multi-objective optimization model for sizing an off-grid hybrid energy microgrid with optimal dispatching of a diesel generator // Journal of Energy Storage. 2023. Vol. 68. 107621. Doi: 10.1016/j.est.2023.107621

50. Qiao M., Yu Z., Dou Z., et al. Study on Economic Dispatch of the Combined Cooling Heating and Power Microgrid Based on Improved Sparrow Search Algorithm // Energies. 2022. Vol. 15, N14. 5174. Doi: 10.3390/en15145174

51. Shan J., Lu R. Multi-objective economic optimization scheduling of CCHP micro-grid based on improved bee colony algorithm considering the selection of hybrid energy storage system // Energy Reports. 2021. Vol.7. pp. 326-341. Doi: 10.1016/j.egyr.2021.10.026

52. Jia S., Kang X. Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk // Energies. 2022. Vol. 15, N9. 3394. doi:10.3390/en15093394

53. Veluchamy K., Veluchamy M. A new energy management technique for microgrid system using muddy soil fish optimization algorithm // International Journal of Energy Research. 2021. Vol. 45. 14824–14844. Doi:10.1002/er.6758

54. Nagarajan K., Rajagopalan A., Angalaeswari S. et al. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm // Computational Intelligence and Neuroscience. 2022. Vol. 2022, N01. 6461690. Doi: 10.1155/2022/6461690

55. Zhang Y., Zhou Y. Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm // Biomimetics. 2024. Vol. 9, N3. 138. Doi: 10.3390/biomimetics9030138

56. Zhang Y., Zhou H., Xiao L., et al. Research on economic optimal dispatching of microgrid cluster based on improved butterfly optimization algorithm // International Transactions Electrical Energy Systems. 2022. Vol. 2022, N01. 7041778. Doi: 10.1155/2022/7041778

57. Wang F., Xuan Z., Zhen Z., et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework // Energy Convers Manage. 2020. Vol.212. 112766. Doi: 10.1016/j.enconman.2020.112766

58. Liu L., Yang G. Distributed Optimal Energy Management for Integrated Energy Systems // IEEE Transactions on Industrial Informatics. 2022. Vol. 18. N10. pp. 6569-6580. Doi:10.1109/TII.2022.3146165.

59. Liang Y., Xu Z., Li H., et al. A random optimization strategy of microgrid dispatching based on stochastic response surface method considering uncertainty of renewable energy supplies and load demands // International Journal of Electrical Power & Energy Systems. 2023. Vol.154. 109408. Doi: 10.1016/j.ijepes.2023.109408

60. Luo L., Abdulkareem S-S., Rezvani A., et al. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty // Journal of Energy Storage. 2020. Vol.28. 101306. Doi: 10.1016/j.est.2020.101306

61. Yang M., Cui Y., Wang J. Multi-Objective optimal scheduling of island microgrids considering the uncertainty of renewable energy output // International Journal of Electrical Power & Energy Systems. 2023. Vol.144. 108619. Doi: 10.1016/j.ijepes.2022.108619

62. Hassaballah E-G., Keshta H-E., Latif-Abdel K-M., et al. A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties // Energy. 2024. Vol.299. 131419. Doi: 10.1016/j.energy.2024.131419

63. Hou J., Yu W., Xu Z., et al. Multi-time scale optimization scheduling of microgrid considering source and load uncertainty // Electric Power Systems Research. 2023. Vol.216. 109037. Doi: 10.1016/j.epsr.2022.109037

64. Ahmadi S., Marcos T-V., Ali A-G., et al. A novel interval-based formulation for optimal scheduling of microgrids with pumped-hydro and battery energy storage under uncertainty // International Journal of Energy Research. 2022. Vol. 46, N9. pp. 11523-13110. Doi: 10.1002/er.8058

65. Zhou K., Zhou K., Yang S. Reinforcement learning-based scheduling strategy for energy storage in microgrid // Journal of Energy Storage. 2022. Vol.51. 104379. Doi:10.1016/j.est.2022.104379

66. Goh H-H., Shi S., Liang X., et al. Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty // Applied Energy. 2022. Vol.327. 120094. Doi: 10.1016/j.apenergy.2022.120094

67. Nan B., Dong S., Tang K., et al. Optimal configuration of energy storage in PV-storage microgrid considering demand response and uncertainties in source and load // Power System Technology. 2023. Vol. 47, N04. pp. 1340-1349. Doi: 10.13335/j.1000-3673.pst.2022.0798

68. Sahar S-B., Mehdi A., Behnam M-I., et al. Optimal scheduling of a microgrid based on renewable resources and demand response program using stochastic and IGDT-based approach // Journal of Energy Storage. 2024. Vol.86, Pt. B. 111306. Doi: 10.1016/j.est.2024.111306

69. Kumar A., Verma A., Talwar R. Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care educational and industrial facilities // Energy. 2020. Vol. 208. 118248. Doi: 10.1016/j.energy.2020.118248

70. Wen L., Zhou K., Yang S., et al. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting // Energy. 2019. Vol.171. pp.1053-1065. Doi: 10.1016/j.energy.2019.01.075

71. Li Y., Wang R., Yang Z. Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting // IEEE Transactions on Sustainable Energy. 2022. Vol. 13, N01. pp. 159-169. Doi: 10.1109/TSTE.2021.3105529.

72. Afrasiabi M., Mohammadi M., Rastegar M., et al. Multi-agent microgrid energy management based on deep learning forecaster // Energy. 2019. Vol. 186. 115873. Doi:10.1016/j.energy.2019.115873

73. Kim H.J., Kim M.K. A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid // Applied Energy. 2023. Vol.332. 120525. Doi: 10.1016/j.apenergy.2022.120525

74. Arriaga M., Cañizares C. A., Kazerani M. Northern lights: Access to electricity in Canada's northern and remote communities // IEEE Power and Energy Magazine. 2014; Vol. 12, N4. pp. 50-59. Doi: 10.1109/MPE.2014.2317963.

75. Hernandez-Aramburo C. A., Green T. C., Mugniot N. Fuel consumption minimization of a microgrid // IEEE Transactions on Industry Applications. 2005. Vol. 41, N03. pp. 673-681. Doi: 10.1109/TIA.2005.847277.

76. Mohammad R E., Amjady N. Adaptive robust optimization framework for day-ahead microgrid scheduling // International Journal of Electrical Power & Energy Systems. 2019. Vol.107. pp. 213-223. Doi: 10.1016/j.ijepes.2018.11.029

77. Dong W., Sun H., Mei C., et al. Forecast-driven stochastic optimization scheduling of an energy management system for an isolated hydrogen microgrid // Energy Conversion and Management. 2023. Vol. 277. 116640. Doi: 10.1016/j.enconman.2022.116640

78. Ciftci O., Mehrtash M., Kargarian A. Data-driven nonparametric chance-constrained optimization for microgrid energy management // IEEE Transations on Industrial Informatics. 2020. Vol. 16, N04. pp. 2447-2457. Doi: 10.1109/tii.2019.2932078

79. Ge X., Khazaei J. Physics-informed Convolutional Neural Network for Microgrid Economic Dispatch // arXiv -EE-Systems and Control. 2024. Doi: arxiv-2404.18362

80. Deng S., Zhong J., Liang H., et al. Optimal microgrid dispatch with 5G communication base stations: A knowledge-assist deep reinforcement learning method // Electric Power Systems Research. 2025. Vol.248. 111982. Doi: 10.1016/j.epsr.2025.111982

81. Luo R., Gao W., Zhao X., et al. A Two-Stage Green Energy Dispatch Scheme for Microgrid using Deep Reinforcement Learning // in IEEE Transactions on Green Communications and Networking. 2025. Doi: 10.1109/TGCN.2025.3560143

82. Yang T., Xu Z., Ji S., et al. Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning // Applied Energy. 2025. Vol. 378. Pt. A. 124641. Doi: 10.1016/j.apenergy.2024.124641

83. Liu W., Mao Z. Microgrid economic dispatch using Information-Enhanced Deep Reinforcement Learning with consideration of control periods // Electric Power Systems Research. 2025. Vol. 239. 111244. Doi: 10.1016/j.epsr.2024.111244


Рецензия

Для цитирования:


Чэнь С., Ду Я., Цинь Л., Велькин В.И. Оптимизация планирования микросетей: современные подходы и перспективы. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2025;27(5):130-152. https://doi.org/10.30724/1998-9903-2025-27-5-130-152

For citation:


Chen X., Du Y., Qin L., Velkin V.I. Optimization of microgrid scheduling: current approaches and prospects. Power engineering: research, equipment, technology. 2025;27(5):130-152. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-5-130-152

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)