Optimization of microgrid scheduling: current approaches and prospects
https://doi.org/10.30724/1998-9903-2025-27-5-130-152
Abstract
THE RELEVANCE. This article provides a review of modern approaches to the optimization of microgrid planning, including multi-objective optimization methods, uncertainty considerations, and the application of intelligent algorithms. Microgrids, as a key component of modern energy systems, integrate distributed energy resources, storage devices, and loads, thereby enhancing the efficiency, reliability, and environmental sustainability of energy supply. METHODS. The paper examines key optimization models, such as minimizing operational costs, reducing emissions, and improving power supply reliability. Special attention is given to methods for addressing uncertainties related to renewable energy sources and load variability, as well as the role of energy storage systems and demand response. The article also analyzes traditional and intelligent optimization algorithms, including genetic algorithms, particle swarm optimization, and deep learning. RESULTS. The application of modern models such as SRSM-SOCR, modified Bet algorithm (MBA), deep reinforcement learning (DRL) and deep recurrent neural network (DRNN) made it possible to reduce the operating costs of microgrids by 18-25%, increase the share of generation from renewable sources to 70-75% and reduce CO₂ emissions by up to 60%. Real-life examples of microgrids in Germany and Greece are also presented, confirming the effectiveness of these approaches. CONCLUSION. Based on a literature review, key directions for future research are identified, such as the integration of transfer learning and reinforcement learning to enhance model adaptability. The findings of this study can be useful for developing effective microgrid management strategies in the context of increasing renewable energy penetration and evolving energy system requirements.
About the Authors
X. ChenRussian Federation
Chen Xiaoyu
Yekaterinburg
Y. Du
Russian Federation
Du Yang
Yekaterinburg
L. Qin
Russian Federation
Qin Lisong
Yekaterinburg
V. I. Velkin
Russian Federation
Vladimir I. Velkin
Yekaterinburg
References
1. Ghulomzoda AH, Safaraliev MKh, Lyukhanov EA. Modified Method for Synchronizing Microgrid with an External Isolated Power System. Electrotechnical Systems and Complexes. 2021; 3(52):2-80. (In Russ). Doi:10.18503/2311-8318-2021-3(52)-72-80
2. Gu W., Wu Z., Bo R., et al. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review // International Journal of Electrical Power & Energy Systems. 2014. Vol. 54. pp. 26-37. Doi: 10.1016/j.ijepes.2013.06.028
3. Upasana L., Nasreen B., Irraivan E., et al. An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids // Mathematics. 2023. Vol. 11, N9. 2079. Doi: 10.3390/math11092079
4. Seddaoui N., Boulouma S., Rahmani L. A hybrid Improved Salp Swarm Algorithm and Harris Hawk Optimizer for energy planning in microgrids with minimum operating cost // International Journal of Green Energy. 2024. Vol. 22, N1. pp. 72–89. Doi: 10.1080/15435075.2024.2406844
5. Wu X., Shan Y., Fan K. A Modified Particle Swarm Algorithm for the Multi-Objective Optimization of Wind/Photovoltaic/Diesel/Storage Microgrids // Sustainability. 2024. Vol. 16, N03. 1065. Doi: 10.3390/su16031065
6. Zhu X., Peng C., Geng H. Multi-Objective Sizing Optimization Method of Microgrid Considering Cost and Carbon Emissions // 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China. 2022. pp. 2278-2283. Doi:10.1109/SPIES55999.2022.10082041.
7. Wang X., Wang S., Ren J., et al. Optimizing Economic Dispatch for Microgrid Clusters Using Improved Grey Wolf Optimization // Electronics. 2024. Vol. 13, N16. 3139. Doi: 10.3390/electronics13163139
8. Dong A., Lee S-K. The Study of an Improved Particle Swarm Optimization Algorithm Applied to Economic Dispatch in Microgrids // Electronics. 2024. Vol. 13, N20. 4086. Doi: 10.3390/electronics13204086
9. Rajagopalan A., Nagarajan K., Montoya O. D., et al. Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer // Energies. 2022. Vol. 15, N23. 9024. Doi:10.3390/en15239024
10. Maël R., Florian D., Dominique G., et al. Multi-Objective Optimization of Autonomous Microgrids with Reliability Consideration // Energies. 2021. Vol. 14, N15. 4466. Doi: 10.3390/en14154466
11. Younes Z., Alhamrouni I., Mekhilef S., et al. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid // Ain Shams Engineering Journal. 2021. Vol. 12, N2. pp. 1985–1994. Doi: 10.1016/j.asej.2020.10.021
12. Karthik N., Rajagopalan A., Bajaj M. et al. Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems // Scientific Reports. 2024. Vol. 14. 18997. Doi: 10.1038/s41598-024-69734-4
13. Yang X., Leng Z., Xu S., et al. Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method // Renewable Energy. 2021. Vol.172. pp. 408-423. Doi: 10.1016/j.renene.2021.02.165
14. Zhao G., Luo J., Song N., et al. Multi-objective optimal dispatch of island microgrid considering a novel scheduling resource // Electric Power Systems Research. 2025. Vol.241:111378. Doi:10.1016/j.epsr.2024.111378
15. Ren Z., Qu X., Wang M., et al. Multi-Objective Optimization for DC Microgrid Using Combination of NSGA-II Algorithm and Linear Search Method // IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2023. Vol. 13, N3. pp. 789-796. Doi:10.1109/JETCAS.2023.3284061.
16. Huang Y., He G., Pu Z., et al. Multi-objective particle swarm optimization for optimal scheduling of household microgrids // Front. Energy Res. 2024. Vol. 11. 1354869. Doi:10.3389/fenrg.2023.1354869
17. Alabdullah M.H., Abido M. A. Microgrid energy management using deep Q-network reinforcement learning // Alexandria Engineering Journal. 2022. Vol. 61, N11. pp. 9069-9078. Doi: 10.1016/j.aej.2022.02.042
18. Nguyen Q. M., Nguyen D. L., Nguyen T. K. A mixed-integer linear programming model for microgrid optimal scheduling considering BESS degradation and RES uncertainty // Journal of Energy Storage. 2024. Vol. 104. Pt. B. 114663. Doi: 10.1016/j.est.2024.114663
19. Amirhossein B., Hamidreza A., Somayeh M. Day-ahead optimal scheduling of microgrid with considering demand side management under uncertainty // Electric Power Systems Research. 2022. Vol. 209. 107965. Doi: 10.1016/j.epsr.2022.107965
20. Tang W., Gao F. Optimal operation of household microgrid day-ahead energy considering user satisfaction // High Voltage Engineering. 2017. Vol. 43, N1. pp. 140-148. Doi: 10.13336/j.1003-6520.hve.20161227019
21. He L. Research on optimal scheduling of multi-microgrid economics considering peak shaving and valley filling strategies // Proceedings of Excellent Papers of Zhejiang Electric Power Society of China 2022 (Power Grid Technology). 2023. pp. 175-187.
22. Zhu L., Zhou X., Tang L., et al. Multi-objective optimal dispatch of microgrid using particle swarm optimization combined with bacterial foraging algorithm // Power System Technology. 2017. Vol. 41, N6. pp. 1847-1854. Doi: 10.13335/j.1000-3673.pst.2016.2504
23. Xing Y., Liu L., Wang Y. An application model of multi-objective optimization algorithm // Success (Education Edition). 2011. N5. pp. 242. Doi: CNKI:SUN:CJJY.0.2011-05-211
24. Cao Z., Zhou L., Zhang Y., et al. Microgrid planning based on power supply reliability // Power System Protection and Control. 2015. Vol. 43, N14. pp. 6. Doi: JournalArticle/5b3bd98ec095d70f00940949
25. Xu Y., Ai Q. Coordinated optimal dispatch of active distribution network with microgrids // Electric Power Automation Equipment. 2016. Vol. 36, N11. pp. 18-26. Doi: 10.16081/j.issn.1006-6047.2016.11.003
26. Xu T., Ai Q. Coordinated optimal scheduling method for active distribution networks containing microgrids // Electric Power Automation Equipment. 2016. Vol. 36, N11. pp.18-26. Doi: 10.16081/j.issn.1006-6047.2016.11.003
27. Yu Z., Guo L., Liu W., et al. Stochastic optimal planning software for stand-alone microgrids and its implementation // Power System Automation. 2015. Vol. 39, N6. pp. 18-23. Doi: 10.7500/AEPS20140207002
28. Tong N., Li Y., Shen H., et al. Optimal scheduling of microgrids based on improved black hole algorithm // Journal of Power Science and Technology. 2021. Vol. 36, N05. pp.113-119. Doi: 10.19781/j.issn.1673-9140.2021.05.014
29. Li J., Yuan M. Green Energy Town Construction in Germany: Ideas, Strategies and Experiences // Journal of Shandong University of Science and Technology: Social Sciences. 2015. Vol. 17, N6. Doi: 10.16452/j.cnki.sdkjsk.20151225.010
30. Christie A. German Village Achieves Energy Independence… And Then Some // BioCycle August 2011. 2011. Vol. 52, N8. pp.37.
31. Kaldellis J., Zafirakis D. Prospects and challenges for clean energy in European Islands.The TILOS paradigm // Renewable Energy. 2020. Vol. 145. pp.2489-2502. Doi: 10.1016/j.renene.2019.08.014
32. Notton G., Nivet M. -L., Zafirakis D., et al. Tilos, the first autonomous renewable green island in Mediterranean: A Horizon 2020 project // 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria. 2017. pp.102-105. Doi:10.1109/ELMA.2017.7955410.
33. Boulogiorgou D., Ktenidis P. TILOS local scale Technology Innovation enabling low carbon energy transition // Renewable Energy. 2020. Vol. 146. pp.397-403. Doi: 10.1016/j.renene.2019.06.130
34. Li W., Li E., Wang P. The Technical Status and Development Tendency of Microgrid // Telecom Power Technology. 2015. N05. pp: 202-207. Doi: CNKI:SUN:TXDY.0.2015-05-065
35. Zhu L., Zhou X., Tang L., et al. Multi-objective optimal operation for microgrid considering interruptible loads // Power System Technology. 2017. Vol. 41, N6. pp. 1847-1854. Doi: 10.13335/j.1000-3673.pst.2016.2504
36. Nikolaos E., Myronas G., Michael C. Optimal energy planning and scheduling of microgrids // Chemical Engineering Research and Design. 2018. Vol. 131, N03. pp. 318-332. Doi:10.1016/j.cherd.2017.07.030
37. Xue X., Ai X., Fang J., et al. Real-Time Schedule of Microgrid for Maximizing Battery Energy Storage Utilization // IEEE Transactions on Sustainable Energy. 2022. Vol. 13, N3. pp. 1356-1369. Doi:10.1109/TSTE.2022.3153609.
38. Moein B., Mona G. A Multi-Objective Optimization Scheme for Resilient, Cost-Effective Planning of Microgrids // IEEE Power & Energy Society General Meeting (PESGM). 2020. Vol. 8. pp. 206325-206341. Doi:10.1109/ACCESS.2020.3038133
39. Qiu Y., Li Q., Ai Y., et al. Optimal scheduling for microgrids considering long-term and short-term energy storage // Journal of Energy Storage. 2024. Vol 93. pp. 112-137. Doi: 10.1016/j.est.2024.112137
40. Lian Y., Li Y., Zhao Y., et al. Robust multi-objective optimization for islanded data center microgrid operations // Applied Energy. 2023. Vol. 330. 120344. Doi: 10.1016/j.apenergy.2022.120344
41. Zhu W., Guo J., Zhao G. Multi-Objective Dispatching Optimization of an Island Microgrid Integrated with Desalination Units and Electric Vehicles // Processes. 2021. Vol. 9, N5. 798. Doi: 10.3390/pr9050798
42. Huang Z., Xu L., Wang B., et al. Optimizing power systems and microgrids: A novel multi-objective model for energy hubs with innovative algorithmic optimization // International Journal of Hydrogen Energy. 2024. Vol. 69, N5. pp. 927-943. Doi: 10.1016/j.ijhydene.2024.04.341
43. Jhon M., Juan G., Oscar G., et al. Techno-economic approach for energy management system: Multi-objective optimization algorithms for energy storage in standalone and grid-connected DC microgrids // Journal of Energy Storage. 2024. Vol. 102. Pt. 1. 114069. Doi: 10.1016/j.est.2024.114069
44. Zhang Z., Wang Z., Wang H., et al. Research on Bi-Level Optimized Operation Strategy of Microgrid Cluster Based on IABC Algorithm // IEEE Transactions on Industrial Electronics. 2021. Vol.9. pp. 15520-15529. Doi: 10.1109/access.2021.3053122
45. Ren Z., Qu X., Wang M., et al. Multi-Objective Optimization for DC Microgrid Using Combination of NSGA-II Algorithm and Linear Search Method // IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2023. Vol. 13, N3. pp. 789-796. Doi:10.1109/JETCAS.2023.3284061.
46. Hou H., Xue M., Xu Y., et al. Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load // Applied Energy. 2020. Vol. 262. 114489. Doi: 10.1016/j.apenergy.2020.114489
47. Mei Y., Li B., Wang H., et al. Multi-objective optimal scheduling of microgrid with electric vehicles // Energy Reports. 2022. Vol.8. pp. 4512-4524. Doi: 10.1016/j.egyr.2022.03.131
48. Zhang Y., Lv Y., Zhou Y. Research on Economic Optimal Dispatching of Microgrid Based on an Improved Bacteria Foraging Optimization // Biomimetics. 2023. Vol. 8, N2. 150. Doi: 10.3390/biomimetics8020150
49. Premadasa P. N. D., Silva C. M. M. R. S., Chandima D. P., et al. A multi-objective optimization model for sizing an off-grid hybrid energy microgrid with optimal dispatching of a diesel generator // Journal of Energy Storage. 2023. Vol. 68. 107621. Doi: 10.1016/j.est.2023.107621
50. Qiao M., Yu Z., Dou Z., et al. Study on Economic Dispatch of the Combined Cooling Heating and Power Microgrid Based on Improved Sparrow Search Algorithm // Energies. 2022. Vol. 15, N14. 5174. Doi: 10.3390/en15145174
51. Shan J., Lu R. Multi-objective economic optimization scheduling of CCHP micro-grid based on improved bee colony algorithm considering the selection of hybrid energy storage system // Energy Reports. 2021. Vol.7. pp. 326-341. Doi: 10.1016/j.egyr.2021.10.026
52. Jia S., Kang X. Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk // Energies. 2022. Vol. 15, N9. 3394. doi:10.3390/en15093394
53. Veluchamy K., Veluchamy M. A new energy management technique for microgrid system using muddy soil fish optimization algorithm // International Journal of Energy Research. 2021. Vol. 45. 14824–14844. Doi:10.1002/er.6758
54. Nagarajan K., Rajagopalan A., Angalaeswari S. et al. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm // Computational Intelligence and Neuroscience. 2022. Vol. 2022, N01. 6461690. Doi: 10.1155/2022/6461690
55. Zhang Y., Zhou Y. Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm // Biomimetics. 2024. Vol. 9, N3. 138. Doi: 10.3390/biomimetics9030138
56. Zhang Y., Zhou H., Xiao L., et al. Research on economic optimal dispatching of microgrid cluster based on improved butterfly optimization algorithm // International Transactions Electrical Energy Systems. 2022. Vol. 2022, N01. 7041778. Doi: 10.1155/2022/7041778
57. Wang F., Xuan Z., Zhen Z., et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework // Energy Convers Manage. 2020. Vol.212. 112766. Doi: 10.1016/j.enconman.2020.112766
58. Liu L., Yang G. Distributed Optimal Energy Management for Integrated Energy Systems // IEEE Transactions on Industrial Informatics. 2022. Vol. 18. N10. pp. 6569-6580. Doi:10.1109/TII.2022.3146165.
59. Liang Y., Xu Z., Li H., et al. A random optimization strategy of microgrid dispatching based on stochastic response surface method considering uncertainty of renewable energy supplies and load demands // International Journal of Electrical Power & Energy Systems. 2023. Vol.154. 109408. Doi: 10.1016/j.ijepes.2023.109408
60. Luo L., Abdulkareem S-S., Rezvani A., et al. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty // Journal of Energy Storage. 2020. Vol.28. 101306. Doi: 10.1016/j.est.2020.101306
61. Yang M., Cui Y., Wang J. Multi-Objective optimal scheduling of island microgrids considering the uncertainty of renewable energy output // International Journal of Electrical Power & Energy Systems. 2023. Vol.144. 108619. Doi: 10.1016/j.ijepes.2022.108619
62. Hassaballah E-G., Keshta H-E., Latif-Abdel K-M., et al. A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties // Energy. 2024. Vol.299. 131419. Doi: 10.1016/j.energy.2024.131419
63. Hou J., Yu W., Xu Z., et al. Multi-time scale optimization scheduling of microgrid considering source and load uncertainty // Electric Power Systems Research. 2023. Vol.216. 109037. Doi: 10.1016/j.epsr.2022.109037
64. Ahmadi S., Marcos T-V., Ali A-G., et al. A novel interval-based formulation for optimal scheduling of microgrids with pumped-hydro and battery energy storage under uncertainty // International Journal of Energy Research. 2022. Vol. 46, N9. pp. 11523-13110. Doi: 10.1002/er.8058
65. Zhou K., Zhou K., Yang S. Reinforcement learning-based scheduling strategy for energy storage in microgrid // Journal of Energy Storage. 2022. Vol.51. 104379. Doi:10.1016/j.est.2022.104379
66. Goh H-H., Shi S., Liang X., et al. Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty // Applied Energy. 2022. Vol.327. 120094. Doi: 10.1016/j.apenergy.2022.120094
67. Nan B., Dong S., Tang K., et al. Optimal configuration of energy storage in PV-storage microgrid considering demand response and uncertainties in source and load // Power System Technology. 2023. Vol. 47, N04. pp. 1340-1349. Doi: 10.13335/j.1000-3673.pst.2022.0798
68. Sahar S-B., Mehdi A., Behnam M-I., et al. Optimal scheduling of a microgrid based on renewable resources and demand response program using stochastic and IGDT-based approach // Journal of Energy Storage. 2024. Vol.86, Pt. B. 111306. Doi: 10.1016/j.est.2024.111306
69. Kumar A., Verma A., Talwar R. Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care educational and industrial facilities // Energy. 2020. Vol. 208. 118248. Doi: 10.1016/j.energy.2020.118248
70. Wen L., Zhou K., Yang S., et al. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting // Energy. 2019. Vol.171. pp.1053-1065. Doi: 10.1016/j.energy.2019.01.075
71. Li Y., Wang R., Yang Z. Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting // IEEE Transactions on Sustainable Energy. 2022. Vol. 13, N01. pp. 159-169. Doi: 10.1109/TSTE.2021.3105529.
72. Afrasiabi M., Mohammadi M., Rastegar M., et al. Multi-agent microgrid energy management based on deep learning forecaster // Energy. 2019. Vol. 186. 115873. Doi:10.1016/j.energy.2019.115873
73. Kim H.J., Kim M.K. A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid // Applied Energy. 2023. Vol.332. 120525. Doi: 10.1016/j.apenergy.2022.120525
74. Arriaga M., Cañizares C. A., Kazerani M. Northern lights: Access to electricity in Canada's northern and remote communities // IEEE Power and Energy Magazine. 2014; Vol. 12, N4. pp. 50-59. Doi: 10.1109/MPE.2014.2317963.
75. Hernandez-Aramburo C. A., Green T. C., Mugniot N. Fuel consumption minimization of a microgrid // IEEE Transactions on Industry Applications. 2005. Vol. 41, N03. pp. 673-681. Doi: 10.1109/TIA.2005.847277.
76. Mohammad R E., Amjady N. Adaptive robust optimization framework for day-ahead microgrid scheduling // International Journal of Electrical Power & Energy Systems. 2019. Vol.107. pp. 213-223. Doi: 10.1016/j.ijepes.2018.11.029
77. Dong W., Sun H., Mei C., et al. Forecast-driven stochastic optimization scheduling of an energy management system for an isolated hydrogen microgrid // Energy Conversion and Management. 2023. Vol. 277. 116640. Doi: 10.1016/j.enconman.2022.116640
78. Ciftci O., Mehrtash M., Kargarian A. Data-driven nonparametric chance-constrained optimization for microgrid energy management // IEEE Transations on Industrial Informatics. 2020. Vol. 16, N04. pp. 2447-2457. Doi: 10.1109/tii.2019.2932078
79. Ge X., Khazaei J. Physics-informed Convolutional Neural Network for Microgrid Economic Dispatch // arXiv -EE-Systems and Control. 2024. Doi: arxiv-2404.18362
80. Deng S., Zhong J., Liang H., et al. Optimal microgrid dispatch with 5G communication base stations: A knowledge-assist deep reinforcement learning method // Electric Power Systems Research. 2025. Vol.248. 111982. Doi: 10.1016/j.epsr.2025.111982
81. Luo R., Gao W., Zhao X., et al. A Two-Stage Green Energy Dispatch Scheme for Microgrid using Deep Reinforcement Learning // in IEEE Transactions on Green Communications and Networking. 2025. Doi: 10.1109/TGCN.2025.3560143
82. Yang T., Xu Z., Ji S., et al. Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning // Applied Energy. 2025. Vol. 378. Pt. A. 124641. Doi: 10.1016/j.apenergy.2024.124641
83. Liu W., Mao Z. Microgrid economic dispatch using Information-Enhanced Deep Reinforcement Learning with consideration of control periods // Electric Power Systems Research. 2025. Vol. 239. 111244. Doi: 10.1016/j.epsr.2024.111244
Review
For citations:
Chen X., Du Y., Qin L., Velkin V.I. Optimization of microgrid scheduling: current approaches and prospects. Power engineering: research, equipment, technology. 2025;27(5):130-152. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-5-130-152




