Preview

Power engineering: research, equipment, technology

Advanced search

THE REDUCTION ANTHROPOGENIC EMISSION AT THE COMBUSTION OF COALS AND COAL PROCESSING WASTE AS A COMPONENT COAL-WATER SLURRY CONTAINING PETROCHEMICALS

https://doi.org/10.30724/1998-9903-2017-19-3-4-41-52

Abstract

Coal-fired power stations produce of tens millions tons of ash and slag waste, and hundreds of millions cubic meters of gas emissions annual. As part of this work analysis of current methods to reduce anthropogenic emissions in the ash produced by the processing (combustion) of traditional coal fuels was made, advantages and disadvantages of each methods were highlighted. It is shown that both low levels of emissions in the ash and combustion products is difficult to ensure. As a result, it was proposed to use promising coal-water slurry containing petrochemicals instead of pulverized coal. The experimental research into maximum concentrations of anthropogenic emissions from the combustions of coal-water slurry containing petrochemicals. The experimental research into maximum concentrations of anthropogenic emissions by the combustions of coal-water slurry containing petrochemicals basedfilter-cakes were conducted

About the Authors

M. A. Dmitrienko
National Research Tomsk Polytechnic University
Russian Federation


G. S. Nyashina
National Research Tomsk Polytechnic University
Russian Federation


N. E. Shlegel
National Research Tomsk Polytechnic University
Russian Federation


S. A. Shevyrev
National Research Tomsk Polytechnic University
Russian Federation


References

1. Hanif A., Lu Z., Li Z. Utilization of fly ash cenosphere as lightweight filler in cement-based composites - A review. 2017. V. 144. P. 373-384. DOI.org/10.1016/j.conbuildmat.2017.03.188.

2. Blissett R.S., Rowson N.A., A review of the multi-component utilisation of coal fly ash // Fuel. 2012. V. 97. P. 1-23. DOI.org/10.1016/j.fuel.2012.03.024.

3. Ahmaruzzaman M. A review on the utilization of fly ash // Prog. Energy Combust. Sci. 2010. V. 36. I. 3. P. 327-363. DOI.org/10.1016/j.pecs.2009.11.003.

4. Ribeiro J., Valentim B., Ward C., Flores D. Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact // Int. J. Coal Geol. 2011. V. 68. I. 2-3. P. 204-212. DOI.org/10.1016/j.coal.2011.01.010.

5. Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi Y.Q. A comprehensive review on the applications of coal fly ash // Earth-Sci. Rev. 2015. V. 141. P. 105-121. DOI.org/10.1016/j.earscirev.2014.11.016

6. Афанасьева О.В., Мингалеева Г.Р., Добронравов А.Д., Шамсутдинов Э.В. Комплексное использование золошлаковых отходов // Известия вузов. Проблемы энергетики. 2015. № 7-8. C. 26-36.

7. Zhai M., Guo L., Sun L., Zhang Y., Dong P., Shi W. Desulfurization performance of fly ash and CaCO3 compound absorbent // Powder Technol. 2017. V.305. P. 553-561. DOI.org/10.1016/j.powtec.2016.10.021

8. Davini P. Flue gas treatment by activated carbon obtained from oil-fired fly ash // Carbon. 2002. V. 40. P. 1973-1979. DOI.org/10.1016/S0008-6223(02)00049-0

9. Suarez-Ruiz I., Hower J.C., Thomas G.A. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants // Energy Fuel. 2007. V. 21. P. 59-70. DOI:10.1021/ef0603481

10. López-Antón M.A., Díaz-Somoano M. Mercury retention by fly ashes from coal combustion: influence of the unburned coal content // Ind. Eng. Chem. Res. 2007. V. 46. P. 927-931. DOI: 10.1021/ie060772p

11. Shanthakumar S., Singha D.N., Phadke R.C. Flue gas conditioning for reducing suspended particulate matter from thermal power stations // Prog. Energy Combust. Sci. 2008. V. 34. I. 6. P. 685-695. DOI.org/10.1016/j.pecs.2008.04.001

12. Jiao J., Zheng Y. A multi-region model for determining the cyclone efficiency // Sep. Purif. Technol. 2007. V. 53. P. 266-273. DOI.org/10.1016/j.seppur.2006.07.011

13. Saleem M., Krammer G. Effect of filtration velocity and dust concentration on cake formation and filter operation in a pilot scale jet pulsed bag filter // J. Hazard. Mater. 2007. V. 144. P. 677-681. DOI.org/10.1016/j.jhazmat.2007.01.094

14. Peukert W., Wadenpohl C. Industrial separation of fine particles with difficult dust properties // Powder Technol. 2001. V. 118. I. 1-2. P. 136-148. DOI.org/10.1016/S0032-5910(01)00304-7

15. Hanne O., Timo N., Hannu K. Increase the utilization of fly ash with electrostatic precipitation // Miner. Eng. 2006. V. 19. P. 1596-1602. DQI.org/10.1016/j.mineng.2006.07.002

16. Sun W.-Y., Wang Q.-Y., Ding S.-L., Su S.-J. Simultaneous absorption of SO2 and NOx with pyrolusite slurry combined with gas-phase oxidation of NO using ozone: Effect of molar ratio of O2 / (SO2 + 0.5NOx) in flue gas // Chem. Eng. J. 2013. V. 228. P. 700-707.

17. Mathieu Y., Tzanis L., Soularda M., Patarin J., Vierling M., Molière M. Adsorption of SOx by oxide materials: A review // Fuel Process. Technol. 2013. V. 114. P. 81-100. DOI.org/10.1016/j.fuproc.2013.03.019

18. Thirupathi B., Smirniotis P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations // J. Catal. 2012. V. 288. P. 74-83. DOI.org/10.1016/j.jcat.2012.01.003

19. Glushkov D.O., Syrodoy S.V., Zhakharevich A.V., Strizhak, P.A. Ignition of promising coal-water slurry containing petrochemicals: Analysis of key aspects // Fuel Process. Technol. 2016. V. 148. P. 224-235. DOI.org/10.1016/j.fuproc.2016.03.008

20. Glushkov D.O., Lyrshchikov S.Y., Shevyrev S.A., Strizhak, P.A. Burning properties of slurry based on coal and oil processing waste // Energy Fuels. 2016. V. 30. I. 4. P. 3441-3450. DOI:10.1021/acs.energyfuels.5b02881

21. Лырщиков С.Ю., Стрижак П.А., Шевырев С.А. Характеристики зольного остатка сжигания капель органоводоугольных топливных композиций при разных температурах окислителя // Кокс и химия. 2016. № 5. С. 11-19.

22. Ильин А.К., Ильин Р.А., Горбанов Т.Р. О дисперсном составе водотопливных эмульсий // Известия вузов. Проблемы энергетики. 2012. № 11-12. C. 33-40.

23. Лысак Д.В., Ростовщикова Д.В., Перминова Л.Г. Водоугольное топливо в теплоэнергетике // Молодёжь и наука: Сборник материалов VI Всероссийской научно-технической конференции студентов, аспирантов и молодых учёных. Красноярск: Сибирский федеральный ун-т. 2011. С. 1-4.

24. Liu J., Jiang X., Zhou L., Wang H., Han X. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler // J. Hazard. Mater. 2009. V. 167. P. 817-823. DOI.org/10.1016/j.jhazmat.2009.01.061

25. Medina A., Gamero P., Querol X., Moreno N., Leon B., Almanza M., Vargas G., Izquierdo M., Font O. Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization // J. Hazard. Mater. 2010. V. 181. P. 82-90. DOI.org/10.1016/j.jhazmat.2010.04.096

26. Nyashina G., Legros J.C., Strizhak P. Environmental potential of using coal-processing waste as the primary and secondary fuel for energy providers // Energies. 2017. V. 10 (3). P 405.


Review

For citations:


Dmitrienko M.A., Nyashina G.S., Shlegel N.E., Shevyrev S.A. THE REDUCTION ANTHROPOGENIC EMISSION AT THE COMBUSTION OF COALS AND COAL PROCESSING WASTE AS A COMPONENT COAL-WATER SLURRY CONTAINING PETROCHEMICALS. Power engineering: research, equipment, technology. 2017;19(3-4):41-52. (In Russ.) https://doi.org/10.30724/1998-9903-2017-19-3-4-41-52

Views: 411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)