Preview

Power engineering: research, equipment, technology

Advanced search

CALCULATION OF NON-ISOTHERMAL MOTION OF A TWO-PHASE COMPRESSIBLE MEDIUM AT IMPLOUSION

https://doi.org/10.30724/1998-9903-2018-20-1-2-128-137

Abstract

Hydrodynamic processes in a vertical well casing during implosion are considered. Mathematical modeling of the motion of a two-phase medium with a free surface is based on the volume of fluid method. Unsteady Reynolds-Averaged Navier-Stokes equations are supplemented by the Menter’s Shear Stress Transport turbulence model. Numerical calculations were performed by the finite volume method using the open integrated platform OpenFOAM. It was found that the depression period is 1 s, and the maximum pressure at the control point is 1.8 times higher than the hydrostatic pressure at the given input parameters.

About the Authors

I. V. Morenko
Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences
Russian Federation

Irina V. Morenko - сand. sci. (techn.), senior researcher



Y. A. Volkov
Oil field development methods improvement center ltd
Russian Federation

Yuriy A. Volkov - сand. sci. (phys.-math.), general director



References

1. Vassilevski Yu.V., Nikitin K.D., Olshanskii M.A., Terekhov K.M. CFD technology for 3D simulation of large-scale hydrodynamic events and disasters // Russ. J. Numer. Anal. Math. Modelling, 2012. Vol. 27, No. 4. P. 399–412.

2. Volkov Ju.A., Konjuhov V.M., Kosterin A.V., Chekalin A.N. Matematicheskoe modelirovanie implozionnogo vozdejstvija na plast. Kazan': «Pluton», 2004. 78 s.

3. Popov A.A. Implozija v processah neftedobychi. M.: Nedra, 1996. 192 c.

4. Kosolapov A.F., Korzhenevskij A.G., Korzhenevskaja T.A. Jenergeticheskie, gidrodinamicheskie i volnovye harakteristiki implozionnogo istochnika DSK-1 // Nauchno tehnicheskij vestnik «Karotazhnik». 2015. № 247. P. 92–100.

5. Konjuhov V.M., Krasnov S.V., Konjuhov I.V. Komp'juternoe modelirovanie implozionnyh processov v sisteme «neftjanoj plast – skvazhina – podvizhnaja implozionnaja kamera» // Nauchnotehnicheskij zhurnal «Avtomatizacija, telemehanizacija i svjaz' v neftjanoj promyshlennosti». 2016. № 5. P. 3237.

6. Davydova E.V., Korchagova V.N. Svobodnoe programmnoe obespechenie dlja modelirovanija zhidkosti so svobodnoj poverhnost'ju // Trudy instituta sistemnogo programmirovanija RAN. 2016. T. 28. № 1. P. 243-258.

7. Shalanin V.A. Lagranzhevy metody modelirovanija potokov so svobodnoj poverhnost'ju // Molodoj uchenyj. 2016. № 2. P. 261-263.

8. Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries // Journal of Computational Physics. 1981. Vol. 39, N. 1. P. 201-225.

9. Morenko I.V., Fedjaev V.L. Vlijanie turbulentnosti potoka vjazkoj zhidkosti na gidrodinamicheskie harakteristiki i teploobmen obtekaemyh tel // Izvestija vuzov. Problemy jenergetiki. 2010. № 7-8. P. 36-45.

10. Menter F.R. Two-equation eddy viscosity turbulence models for engineering applications // AIAA J. 1994. V. 32. № 8. P. 1598-1605.

11. OpenFOAM – The open source CFD toolbox [Jelektronnyj resurs]. URL: http://www.openfoam.com.

12. Martin J.C., Moyce W.J. An experimental study of the collapse of liquid columns on a rigid horizontal plane // Phil. Trans. Roy. Soc. London (Philosophical transactions of the royal society a mathematical, physical and engineering sciences). 1952. Vol. 244. No. 882. Pp. 312-324. DOI: 10.1098/rsta.1952.0006.


Review

For citations:


Morenko I.V., Volkov Y.A. CALCULATION OF NON-ISOTHERMAL MOTION OF A TWO-PHASE COMPRESSIBLE MEDIUM AT IMPLOUSION. Power engineering: research, equipment, technology. 2018;20(1-2):128-137. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-1-2-128-137

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)