Preview

Power engineering: research, equipment, technology

Advanced search

NUMERICAL ANALYSIS OF THE TEMPERATURE FIELDS OF THE LITHIUM-ION BATTERY UNDER CONDITIONS OF HIGH CURRENT LOADS

https://doi.org/10.30724/1998-9903-2017-19-11-12-126-134

Abstract

A numerical analysis of the formation of temperature fields as a result of the Joule heat release in a segment of a typical lithium-ion battery has been carried out. Software packages ANSYS Electric and ANSYS Fluent were used. At mathematical modeling of convective and conductive mechanisms of heat transfer and the release of thermal energy during the passage of electric current through the material of the plates of the battery were taken into account. As a result of the numerical simulation, the electrolyte temperatures of the accumulator are established when passing currents close to the maximum permissible. Temperature distributions in the investigated region have been obtained.

 

About the Authors

A. S. Krasnoshlykov
Tomsk Polytechnic University, Tomsk
Russian Federation

post-graduate student of the Department of Theoretical and Industrial Heat Engineering. Energy Institute of the State Educational Institution of Higher Professional Education "National Research Tomsk Polytechnic University"

 



G. V. Kuznetsov
Tomsk Polytechnic University, Tomsk
Russian Federation

Doctor of Physical and Mathematical Sciences, Head of the Department of Theoretical and Industrial Heat Engineering. Energy Institute of the State Educational Institution of Higher Professional Education "National Research Tomsk Polytechnic University".

 



References

1. Bruskin D.Je., Sindeev I.M. Jelektrosnabzhenie letatel'nyh apparatov. M.: Vysshaja shkola, 1988. 263 p.

2. Van Mierlo J., Maggetto G. Comparison of the environmental damage caused by vehicles with different alternative fuels and drive trains // Automobile Engineering. 2003. No. 36. P. 583–593.

3. Ahmadou Sambaa, Noshin Omar Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells // Electrochimica Acta. 2014. No. 117. P. 246–254.

4. Rebecca Slayton, Graham Spinardi Radical innovation in scaling up: Boeing’s Dreamliner and the challenge of socio-technical transitions // Technovation. 2016. No. 47. P. 47-58.

5. Tao Song, Yan LI, Jiashan Song, Zhao Zhang Airworthiness considerations of supply chain management from Boeing 787 Dreamliner battery issue // Procedia Engineering. 2014. No. 80. P. 628–637.

6. Rebrov S.G., Janchur S.V., Mansurov V.S., Moskovkin S.A. Issledovanija litij-ionnyh akkumuljatorov kosmicheskogo naznachenija na pozharovzryvobezopasnost' // «Trudy MAI». 2014. No. 72.

7. Leonova T.A., Dudnik A.I., Miheev A.E., Osipova I.V., Churilov G.N. Razrjadnye harakteristiki litij-ionnyh akkumuljatorov s uglerodnymi jelektrodami // Vestnik Sibirskogo gosudarstvennogo ajerokosmicheskogo universiteta im. Ak. M.F. Reshetneva. 2012. No. 4 (44). P. 25-27.

8. Oliveira J.L.G., Tecchio C., Paiva K.V., Mantelli M.B.H., Gandolfi R., Ribeiro L.G.S. Passive aircraft cooling systems for variable thermal conditions // Applied Thermal Engineering. 2015. V. 79. P. 88-97.

9. Muravyov S.V., Borikov V.N., Natalinova N.M. A Computer System: Measurement of Welding Surge Current // Measurement and Control. 2009. V. 42. No. 2. P. 44-47.

10. M. Sievers, U. Sievers, S.S. Mao, Thermal modelling of new Li-ion cell design modifications // Forschung im Ingenieurwesen. 2010. V. 74 (4). P. 215-231.

11. Botte G.G., Subramanian R.E., Mathematical modeling of secondary lithium batteries // Electrochimica Acta. 2000. V. 45. P. 2595-2609.

12. Inui Y., Kobayashi Y., Watanabe Y., Watase Y., Kitamura Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries // Energy Conversion and Management. 2007. V. 48 (7). P. 2103-2109.

13. Ansys Help. FLUENT Theory Guide.

14. Forgez C., Vinh Do D., Friedrich G., Morcrette M., Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery // Journal of Power Sources. 2010. V. 195 (9). P. 2961-2968.

15. Chunsheng Wang and Jian Hong Ionic Electronic Conducting Characteristics of LiFePO4 Cathode Materials // Electrochemical and Solid-State Letters. 2007. V. 10 (3). P. 65-69.

16. Reza Younesi, Gabriel M. Veith, Patrik Johansson, etc Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S // Energy & Environmental Science. 2015. V. 8. P. 1905.


Review

For citations:


Krasnoshlykov A.S., Kuznetsov G.V. NUMERICAL ANALYSIS OF THE TEMPERATURE FIELDS OF THE LITHIUM-ION BATTERY UNDER CONDITIONS OF HIGH CURRENT LOADS. Power engineering: research, equipment, technology. 2017;19(11-12):126-134. (In Russ.) https://doi.org/10.30724/1998-9903-2017-19-11-12-126-134

Views: 533


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)