Modeling of thermal stresses destroying the porous coating of heat-exchange surfaces of power plants
https://doi.org/10.30724/1998-9903-2019-21-3-117-125
Abstract
Modeling of the low heat conductive low-porous capillary porous coatings and metal (copper, stainless steel) surfaces (base layer) was studied. Heat and mass transfer in the porous coatings moved with excessive liquid due to the combined action of capillary and mass forces. The dynamics of vapor bubble was described along with their heat-dynamic properties, which were observed by the optic research methods. Finding solution for the thermoelasticity allowed to reveal the influence of the specific heat flow and heat tension of compression and stretching depending on time of supply and sizes of pulled particles at the time of the system limit state as to "porous coating - base layer". The theory was confirmed by the trial, which was observed by camcorder SKS-1М.
About the Authors
A. A. GenbachKazakhstan
Alexsandr A. Genbach - doctor of technical sciences, professor, department of thermal power plants
Almaty
D. Yu. Bondartsev
Kazakhstan
David Yu. Bondartsev - doctoral PhD, department of thermal power plants, "Almaty University of Power Engineering and Telecommunications" (AUPET); lead engineer of JS "Trest Sredazenergomontazh" (production planning and control department)
Almaty
References
1. Jamialahmadi M. Experimental and Theoretical Studies on Subcooled Flow Boiling of Pure Liquids and Multicomponent Mixtures, Intern. J Heat Mass Transfer. 2008; 51 (9-10): 2482–2493 doi: 10.1016/j.ijheatmasstransfer.2007.07.052.
2. Genbach AA., Bondartsev DYu., Iliev IK. Heat transfer crisis in the capillary-porous cooling system of elements of heat and power installations. Thermal Science2019;23(Pt2):849-860. https://doi.org/10.2298/TSCI171016139G
3. Ose Y., Kunugi T. Numerical Study on Subcooled Pool Boiling, Progr. In Nucl. Sci. and Technology, 2011; 2:125–129.
4. Genbach AA., Bondartsev DYu., Iliya K. Iliev. Investigation of a high-forced cooling system for the elements of heat power installations. Journal of machine Engineering . 2018; 18 (2):106-117.
5. Krepper E. CFD Modeling Subcooled Boiling- Concept, Validation and Application to Fuel Assembly Design, Nucl. Eng. and Design, 2007; 237 (7.):716–731. doi: 10.1016/j.nucengdes.2006.10.023
6. Genbach AA., Bondartsev DYu., Iliev IK. Modelling of capillary coatings and heat exchange surfaces of elements of thermal power plants. Bulgarian Chemical Communications. 2018; 50:133- 139. doi: 10.5604/01.3001.0012.0937.
7. Ovsyanik AV. Modelirovanie processov teploobmena v kipyashchih zhidkostyah, Gomel'skij gosudarstvennyj tekhnicheskij universitet im. P.O. Suhogo, Gomel': Belarus', 2012. (In Russ).
8. Jamialahmadi M. Experimental and Theoretical Studies on Subcooled Flow Boiling of Pure Liquids and Multicomponent Mixtures, Intern. J Heat Mass Transfer. 2008; 51 (9-10): 2482–2493 doi: 10.1016/j.ijheatmasstransfer.2007.07.052.
9. Alekseik OS., Kravets VYu. Physical Model of Boiling on Porous Structure in the Limited Space.Eastern-European Journal of Enterprise Technologies. 2013; 64 (4):26–31.
10. Ose Y., Kunugi T. Numerical Study on Subcooled Pool Boiling, Progr. In Nucl. Sci. and Technology, 2011; 2:125–129.
11. Polyaev VM., Majorov VA., Vasil'ev LL. Gidrodinamika i teploobmen v poristyh elementah konstrukcij letatel'nyh apparatah. M.: Mashinostroenie 1998. (In Russ).
12. Krepper E. CFD Modeling Subcooled Boiling- Concept, Validation and Application to Fuel Assembly Design, Nucl. Eng. and Design, 2007; 237 (7.):716–731. doi: 10.1016/j.nucengdes.2006.10.023
13. Kovalev SA., Solov'ev SL. Isparenie i kondensaciya v teplovyh trubah. M.: Nauka, 1989. (In Russ).
14. Ovsyanik AV. Modelirovanie processov teploobmena v kipyashchih zhidkostyah, Gomel'skij gosudarstvennyj tekhnicheskij universitet im. P.O. Suhogo, Gomel': Belarus', 2012. (In Russ).
15. 11 Kupetz M., Heiew Jeni E., Hiss F. Modernization and prolongation of operation of steam turbine power plants in Eastern Europe and Russia / Thermal Engineering. 2014; 6: 35–43. (In Rus.)
16. Alekseik OS., Kravets VYu. Physical Model of Boiling on Porous Structure in the Limited Space.Eastern-European Journal of Enterprise Technologies. 2013; 64 (4):26–31.
17. Grin' EA. Vozmozhnosti mekhaniki razrusheniya primenitel'no k zadacham prochnosti, resursa i obosnovaniya bezopasnoj ekspluatacii teplomekhanicheskogo energooborudovaniya.Teploenergetika. 2013; 1:25–32. (In Russ).
18. Polyaev VM., Majorov VA., Vasil'ev LL. Gidrodinamika i teploobmen v poristyh elementah konstrukcij letatel'nyh apparatah. M.: Mashinostroenie 1998. (In Russ).
19. Kovalev SA., Solov'ev SL. Isparenie i kondensaciya v teplovyh trubah. M.: Nauka, 1989. (In Russ).
20. 11 Kupetz M., Heiew Jeni E., Hiss F. Modernization and prolongation of operation of steam turbine power plants in Eastern Europe and Russia / Thermal Engineering. 2014; 6: 35–43. (In Rus.)
21. Grin' EA. Vozmozhnosti mekhaniki razrusheniya primenitel'no k zadacham prochnosti, resursa i obosnovaniya bezopasnoj ekspluatacii teplomekhanicheskogo energooborudovaniya.Teploenergetika. 2013; 1:25–32. (In Russ).
Review
For citations:
Genbach A.A., Bondartsev D.Yu. Modeling of thermal stresses destroying the porous coating of heat-exchange surfaces of power plants. Power engineering: research, equipment, technology. 2019;21(3):117-125. https://doi.org/10.30724/1998-9903-2019-21-3-117-125