UNSTEADY FRICTION AND HEAT TRANSFER IN THE INITIAL PIPELINE SECTION AT THE RESET OF THERMAL LOAD
https://doi.org/10.30724/1998-9903-2018-20-5-6-22-28
Abstract
About the Authors
K. H. GilfanovRussian Federation
Kamil H. Gilfanov – Doctor of Technikal Sciences, professor, Department “Automation of technological processes and productions”.
Kazan.
N. D. Yakimov
Russian Federation
Nikolay D. Yakimov – Doctor of Physical and Mathematical Sciences, professor, Department “Theoretical basis of heat engineering”.
Kazan.
N. Y. Minvaleev
Russian Federation
Nail Y. Minvaleev – graduate student.
Kazan.
E. G. Sheshukov
Russian Federation
Evgeniy G. Sheshukov − Doctor of Physical and Mathematical Sciences, professor, Department “Power machine building”.
Kazan.
N. W. Bogdanova
Russian Federation
Nataliya W. Bogdanova − сand. sci. (techn.), assistant professor Department “Automation of technological processes and productions”.
Kazan.
References
1. Yu Rao, Feng Bo Li, Bernhard Weigand. Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes. J. Heat Transfer. 2015. Vol. 137. Pp. 031901‒10.
2. Isaev S.A., Schelchkov A.V., Leontiev A.I., Gortyshov Yu.F., Baranov P.A., Popov I.A. Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area. Int. J. Heat and Mass Transfer. 2017. Vol. 95. Pp. 40‒62.
3. Popov D.N. Nestatsionarnye gidromekhanicheskie protsessy. M.: Mashinostroenie, 1982. 240 p.
4. Ranaware A.G. Bhosale S.Y. A Study of Heat Transfer Enhancement using V Shaped Dimples on a Flat Plate with Experimentation & CFD. Global Research and Development Journal for Engineering. 2016.Vol. 1. Pp. 104‒110.
5. Popov I.A., Gortyshov Yu.F., Olimpiev V.V. Promyshlennoe primenenie intensifikatsii teploobmena ‒ sovremennoe sostoyanie problemy (obzor) // Teploenergetika. 2012. No. 1. P. 3‒17.
6. Popov I.A., Shchelchkov A.V., Zubkov N.N., Lei R.A., Gortyshov Y.F. Boiling heat transfer of different liquids on microstructured surfaces. Russian Aeronautics. 2014. Vol. 57. No. 4. Pp. 395‒401.
7. Kutateladze S.S., Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe. M.: Energiya, 1972, 344 p.
8. Fafurin A.V. Zakony treniya i teplootdachi v turbulentnom pogranichnom sloe // Teplomassoobmen v dvigatelyakh letatel'nykh apparatov. Kazan', 1979. P. 62‒69. (Sb. nauch. tr./KAI).
9. Gil'fanov K.KH., Podymov V.N., Minvaleev N.YU., Sibgatullin I.F., Gaynullin R.N. Amplitudnofazovye chastotnye kharakteristiki gidrodinamicheskikh i teplovykh parametrov v korotkom tsilindricheskom kanale // Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2014. No. 11‒12. P. 81‒88.
10. Molochnikov V.M., Mazo A.B., Malyukov A.V., Kalinin E.I., Mikheev N.I., Dushina O.A., Paereliy A.A. Osobennosti formirovaniya vikhrevykh struktur v otryvnom techenii za vystupom v kae pri perekhode k turbulentnosti // Teplofizika i aeromekhanika. 2014. No. 3. P. 325‒334.
Review
For citations:
Gilfanov K.H., Yakimov N.D., Minvaleev N.Y., Sheshukov E.G., Bogdanova N.W. UNSTEADY FRICTION AND HEAT TRANSFER IN THE INITIAL PIPELINE SECTION AT THE RESET OF THERMAL LOAD. Power engineering: research, equipment, technology. 2018;20(5-6):22-28. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-5-6-22-28