Preview

Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ

Расширенный поиск

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГАЗИФИКАЦИИ ДРЕВЕСИНЫ С РАЗЛОЖЕНИЕМ СМОЛИСТЫХ ПРОДУКТОВ НА ЧАСТИЦАХ АКТИВНЫХ КОМПОНЕНТОВ

https://doi.org/10.30724/1998-9903-2018-20-11-12-107-117

Полный текст:

Аннотация

Работа посвящена численному исследованию процесса обращенной слоевой газификации древесной биомассы. Такие процессы используются для получения горючих газов на установках малой мощности. Для повышения качества генераторного газа предлагается использовать смесь древесного топлива с негорючим материалом, который может проявлять каталитическую активность при разложении нежелательных смолистых продуктов. Добавление негорючего материала снижает теплотворную способность смеси, однако способствует более глубокой очистке газа. Целью исследования является выбор оптимального соотношения «активный материал/древесное топливо» и определение минимальной активности материала, при которой его добавление к топливу становится эффективным.

Об авторе

И. Г. Донской
Институт систем энергетики им. Л.А. Мелентьева СО РАН, г. Иркутск
Россия
Игорь Геннадьевич Донской – к.т.н., старший научный сотрудник лаборатории термодинамики



Список литературы

1. Recent advances in the development of biomass gasification technology: A comprehensive review / S.K. Sansaniwal, K. Pal, M.A. Rosen, S.K. Tyagi // Renewable and Sustainable Energy Reviews. 2017. V. 72. P. 363–384. (DOI: 10.1016/j.rser.2017.01.038).

2. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production / L. Wang, C.L. Weller, D.D. Jones, M.A. Hanna // Biomass and Bioenergy. 2008. V. 32. P. 573–581. (DOI: 10.1016/j.biombioe.2007.12.007).

3. Development of an ultra–small biomass gasification and power generation system: Part 2. Gasification characteristics of carbonized pellets/briquettes in a pilot–scale updraft fixed bed gasifier / L. Ding, K. Yoshikawa, M. Fukuhara, Y. Kowata, S. Nakamura, D. Xin, L. Muhan // Fuel. 2018. V. 220. P. 210–219. (DOI: 10.1016/j.fuel.2018.01.080).

4. Biomass gasification on a downdraft gasifier with a two–stage air supply: Effect of operating conditions on gas quality / A.L. Galindo, E.S. Lora, R.V. Andrade, S.Y. Giraldo, R.L. Jaen, V.M. Cobas // Biomass and Bioenergy. 2014. V. 61. P. 236–244. (DOI: 10.1016/j.biombioe.2013.12.017).

5. Heidenreich S., Foscolo P.U. New concepts in biomass gasification // Progress in Energy and Combustion Science. 2015. V. 46. P. 72–95. (DOI: 10.1016/j.pecs.2014.06.002).

6. Reactive bed materials for improved biomass gasification in a circulating fluidized bed reactor / J. Pecho, T.J. Schidhauer, M. Sturzenegger, S. Biollaz, A. Wokaun // Chemical Engineering Science. 2008. V. 63. P. 2465–2476. (DOI: 10.1016/j.ces.2008.02.001).

7. Mun T.-Y., Seon P.-G., Kim J.-S. Production of a producer gas from woody waste via air gasification using activated carbon and a two–stage gasifier and characterization of tar // Fuel. 2010. V. 89. P. 3226–3234. (DOI: 10.1016/j.fuel.2010.05.042).

8. Zhang Y., Zheng Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations // Fuel. 2016. V. 183. P. 132–138. (DOI: 10.1016/j.fuel.2016.06.066).

9. Experimental study on biomass (eucalyptus spp.) gasification in a two–stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents / C.A.V.B. de Sales, D.M.Y. Maya, E.E.S. Lora, R.L. Jaen, A.M.M. Reyes, A.M. Gonzalez, R.V. Andrade // Energy Conversion and Management. 2017. V. 145. P. 314–323. (DOI: 10.1016/j.enconman.2017.04.101).

10. A review of biomass gasification syngas cleanup / N. Abdoulmoumine, S. Adhikari, A. Kulkarni, S. Chattanathan // Applied Energy. 2015. V.155. P. 294–307. (DOI: 10.1016/j.apenergy.2015.05.095).

11. Woolcock P.J., Brown R.C. A review of cleaning technologies for biomass–derived syngas // Biomass and Bioenergy. 2013. V. 52. P. 54–84. (DOI: 10.1016/j.biombioe.2013.02.036).

12. Reforming solutions for biomass-derived gasification gas – Experimental results and concept assessment / N. Kaisalo, J. Kihlman, I. Hannula, P. Simell // Fuel. 2015. V. 147. P. 208–220. (DOI: 10.1016/j.fuel.2015.01.056).

13. Zhang R., Brown R.C., Suby A. Thermochemical Generation of Hydrogen from Switchgrass // Energy Fuels. 2004. V. 18. No. 1. P. 251–256. (DOI: 10.1021/ef034024d).

14. Ran J., Li C. High temperature gasification of woody biomass using regenerative gasifier // Fuel Processing Technology. 2012. V. 99. P. 90–96. (DOI: 10.1016/j.fuproc.2012.01.002).

15. Materazzi M. Clean energy from waste. Fundamental investigations on ashes and tar behaviour in a two–stage fluid bed–plasma process for waste gasification. Doctoral Thesis accepted by University College London, UK (Springer Theses). Springer, 2017. 254 p. (DOI: 10.1007/978–3–319–46870–9)

16. Han J., Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview // Renewable and Sustainable Energy Reviews. 2008. V. 12. P. 397 –416. (DOI: 10.1016/j.rser.2006.07.015).

17. Corella J., Toledo J.M., Padilla R. Olivine or Dolomite as In–Bed Additive in Biomass Gasification with Air in a Fluidized Bed: Which Is Better? // Energy & Fuels. 2004. V. 18 (3). P. 713–720. (DOI: 10.1021/ef0340918).

18. Effect of pressure on tar decomposition activity of different bed materials in biomass gasification conditions / S. Tuomi, N. Kaisalo, P. Simell, E. Kurkela // Fuel. 2015. V. 158. P. 293–305. (DOI: 10.1016/j.fuel.2015.05.051).

19. Catalytic gasification of woody biomass in an air–blown fluidized–bed reactor using Canadian limonite iron ore as the bed material / S. Hurley, C. Xu, F. Preto, Y. Shao, H. Li, J. Wang, G. Tourigny // Fuel. 2012. V. 91. P. 170–176. (DOI: 10.1016/j.fuel.2011.07.016).

20. Biomass gasification in a catalytic fluidized reactor with beds of different materials / F. Miccio, B. Piriou, G. Ruoppolo, R. Chirone // Chemical Engineering Journal. 2009. V. 154. P. 369–374. (DOI: 10.1016/j.cej.2009.04.002).

21. H2–rich syngas production by fluidized bed gasification of biomass and plastic fuel / G. Ruoppolo, P. Ammendola, R. Chirone, F. Miccio // Waste Management. 2012. V. 32. No. 4. P. 724–732. (DOI: 10.1016/j.wasman.2011.12.004).

22. Specific Features of Filtration Combustion of a Pyrolized Solid Fuel / E.A. Salganskii, V.M. Kislov, S.V. Glazov, A.F. Zholudev, G.B. Manelis // Combustion, Explosion, and Shock Waves. 2010. V. 46. No. 5. P. 528–532. (DOI: 10.1007/s10573–010–0069–6).

23. Hydrogen–rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of temperature and steam on gasification performance / S. Luo, B. Xiao, Z. Hu, S. Liu, X. Guo, M. He // International Journal of Hydrogen Energy. 2009. V. 34. P. 2191–2194. (DOI: 10.1016/j.ijhydene.2008.12.075).

24. Донской И.Г. Влияние смолообразования на эффективность процесса воздушной газификации биомассы // Известия вузов. Проблемы энергетики. 2015. № 5–6. С. 93–100.

25. Coal gasification process simulations using combined kinetic–thermodynamic models in one–dimensional approximation / I.G. Donskoy, V.A. Shamansky, A.N. Kozlov, D.A. Svishchev // Combustion Theory and Modelling. 2017. V. 21. No. 3. P. 529–559. (DOI: 10.1080/13647830.2016.1259505).

26. Донской И.Г. Моделирование процесса совместной газификации древесины и полимерных материалов в плотном слое // Химия твердого топлива. 2018. № 2. С. 67–72.

27. Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal / M.-H. Cho, T.-Y. Mun, Y.-K. Choi, J.-S. Kim // Energy. 2014. V. 70. P. 128–134. (DOI: 10.1016/j.energy.2014.03.097).

28. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst / M. Artetxe, M.A. Nahil, M. Olazar, P.T. Williams // Fuel. 2016. V. 184. P. 629–636. (DOI: 10.1016/j.fuel.2016.07.036).

29. Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts / G. Duman, T. Watanabe, M.A. Uddin, J. Yanik // Fuel Processing Technology. 2014. V. 126. P. 276–283. (DOI: 10.1016/j.fuproc.2014.04.035).

30. Acidic and basic surface sites of zirkonia-based biomass gasification gas clean-up catalysts / T. Viinikainen, H. Ronkkonen, H. Bradshaw, H. Stephenson, S. Airaksinen, M. Reinkainen, P. Simell, O. Krause // Applied Catalysis A: General. 2009. V. 362. P. 169–177. (DOI: 10.1016/j.apcata.2009.04.037).

31. Han J., Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview // Renewable and Sustainable Energy Reviews. 2008. V. 12. P. 397–416. (DOI: 10.1016/j.rser.2006.07.015).

32. Study on the combustion kinetic characteristics of biomass tar under catalysts / C. Li, Y. Yamamoto, M. Suzuki, D. Hirabayashi, K. Suzuki // Journal of Thermal Analysis and Calorimetry. 2009. V. 95. No. 3. P. 991–997. (DOI: 10.1007/s10973-008-9126-8).

33. Olivine catalysts for methane- and tar-steam reforming / J.N. Kuhn, Z. Zhao, L.G. Felix, R.B. Slimane, C.W. Choi, U.S. Ozkan // Applied Catalysis B: Environmental. 2008. V. 81. P. 14–26. (DOI: 10.1016/j.apcatb.2007.11.040).

34. Reactive bed materials for improved biomass gasification in a circulating fluidized bed reactor / J. Pecho, T.J. Schidhauer, M. Sturzenegger, S. Biollaz, A. Wokaun // Chemical Engineering Science. 2008. V. 63. P. 2465–2476. (DOI: 10.1016/j.ces.2008.02.001).

35. Grabner M. Industrial coal gasification technologies covering baseline and high–ash coal. – Wiley–VCH, 2015. 376 p.

36. Fang X., Jia L. Experimental study on ash fusion characteristics of biomass // Bioresource Technology. 2012. V. 104. P. 769–774. (DOI: 10.1016/j.biortech.2011.11.055).


Для цитирования:


Донской И.Г. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГАЗИФИКАЦИИ ДРЕВЕСИНЫ С РАЗЛОЖЕНИЕМ СМОЛИСТЫХ ПРОДУКТОВ НА ЧАСТИЦАХ АКТИВНЫХ КОМПОНЕНТОВ. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2018;20(11-12):107-117. https://doi.org/10.30724/1998-9903-2018-20-11-12-107-117

For citation:


Donskoy I.G. MATHEMATICAL MODELLING OF WOOD GASIFICATION WITH TARRY PRODUCTS DECOMPOSITION ON ACTIVE MATERIAL PARTICLES. Power engineering: research, equipment, technology. 2018;20(11-12):107-117. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-11-12-107-117

Просмотров: 69


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)