MATHEMATICAL MODELLING OF WOOD GASIFICATION WITH TARRY PRODUCTS DECOMPOSITION ON ACTIVE MATERIAL PARTICLES
https://doi.org/10.30724/1998-9903-2018-20-11-12-107-117
Abstract
The work is devoted to the numerical study of the process of downdraft fixed-bed gasification of woody biomass. Such processes are used to produce combustible gases at lowcapacity power plants. To improve the quality of the produced gas, it is proposed to use a mixture of wood fuel with a non-combustible material that can exhibit catalytic activity in the decomposition of undesired tary products. Adding a non-combustible material leads to lower heat value of fuel mixture, but contributes to a deeper gas purification. The aim of the study is to select the optimal "active material / wood fuel" ratio and to determine the minimum material activity at which its addition to the fuel becomes effective.
About the Author
I. G. DonskoyRussian Federation
Igor G. Donskoy – PhD in Engineering sciences, senior researcher
References
1. Recent advances in the development of biomass gasification technology: A comprehensive review / S.K. Sansaniwal, K. Pal, M.A. Rosen, S.K. Tyagi // Renewable and Sustainable Energy Reviews. 2017. V. 72. P. 363–384. (DOI: 10.1016/j.rser.2017.01.038).
2. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production / L. Wang, C.L. Weller, D.D. Jones, M.A. Hanna // Biomass and Bioenergy. 2008. V. 32. P. 573–581. (DOI: 10.1016/j.biombioe.2007.12.007).
3. Development of an ultra–small biomass gasification and power generation system: Part 2. Gasification characteristics of carbonized pellets/briquettes in a pilot–scale updraft fixed bed gasifier / L. Ding, K. Yoshikawa, M. Fukuhara, Y. Kowata, S. Nakamura, D. Xin, L. Muhan // Fuel. 2018. V. 220. P. 210–219. (DOI: 10.1016/j.fuel.2018.01.080).
4. Biomass gasification on a downdraft gasifier with a two–stage air supply: Effect of operating conditions on gas quality / A.L. Galindo, E.S. Lora, R.V. Andrade, S.Y. Giraldo, R.L. Jaen, V.M. Cobas // Biomass and Bioenergy. 2014. V. 61. P. 236–244. (DOI: 10.1016/j.biombioe.2013.12.017).
5. Heidenreich S., Foscolo P.U. New concepts in biomass gasification // Progress in Energy and Combustion Science. 2015. V. 46. P. 72–95. (DOI: 10.1016/j.pecs.2014.06.002).
6. Reactive bed materials for improved biomass gasification in a circulating fluidized bed reactor / J. Pecho, T.J. Schidhauer, M. Sturzenegger, S. Biollaz, A. Wokaun // Chemical Engineering Science. 2008. V. 63. P. 2465–2476. (DOI: 10.1016/j.ces.2008.02.001).
7. Mun T.-Y., Seon P.-G., Kim J.-S. Production of a producer gas from woody waste via air gasification using activated carbon and a two–stage gasifier and characterization of tar // Fuel. 2010. V. 89. P. 3226–3234. (DOI: 10.1016/j.fuel.2010.05.042).
8. Zhang Y., Zheng Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations // Fuel. 2016. V. 183. P. 132–138. (DOI: 10.1016/j.fuel.2016.06.066).
9. Experimental study on biomass (eucalyptus spp.) gasification in a two–stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents / C.A.V.B. de Sales, D.M.Y. Maya, E.E.S. Lora, R.L. Jaen, A.M.M. Reyes, A.M. Gonzalez, R.V. Andrade // Energy Conversion and Management. 2017. V. 145. P. 314–323. (DOI: 10.1016/j.enconman.2017.04.101).
10. A review of biomass gasification syngas cleanup / N. Abdoulmoumine, S. Adhikari, A. Kulkarni, S. Chattanathan // Applied Energy. 2015. V.155. P. 294–307. (DOI: 10.1016/j.apenergy.2015.05.095).
11. Woolcock P.J., Brown R.C. A review of cleaning technologies for biomass–derived syngas // Biomass and Bioenergy. 2013. V. 52. P. 54–84. (DOI: 10.1016/j.biombioe.2013.02.036).
12. Reforming solutions for biomass-derived gasification gas – Experimental results and concept assessment / N. Kaisalo, J. Kihlman, I. Hannula, P. Simell // Fuel. 2015. V. 147. P. 208–220. (DOI: 10.1016/j.fuel.2015.01.056).
13. Zhang R., Brown R.C., Suby A. Thermochemical Generation of Hydrogen from Switchgrass // Energy Fuels. 2004. V. 18. No. 1. P. 251–256. (DOI: 10.1021/ef034024d).
14. Ran J., Li C. High temperature gasification of woody biomass using regenerative gasifier // Fuel Processing Technology. 2012. V. 99. P. 90–96. (DOI: 10.1016/j.fuproc.2012.01.002).
15. Materazzi M. Clean energy from waste. Fundamental investigations on ashes and tar behaviour in a two–stage fluid bed–plasma process for waste gasification. Doctoral Thesis accepted by University College London, UK (Springer Theses). Springer, 2017. 254 p. (DOI: 10.1007/978–3–319–46870–9)
16. Han J., Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview // Renewable and Sustainable Energy Reviews. 2008. V. 12. P. 397 – 416. (DOI: 10.1016/j.rser.2006.07.015).
17. Corella J., Toledo J.M., Padilla R. Olivine or Dolomite as In–Bed Additive in Biomass Gasification with Air in a Fluidized Bed: Which Is Better? // Energy & Fuels. 2004. V. 18 (3). P. 713–720. (DOI: 10.1021/ef0340918).
18. Effect of pressure on tar decomposition activity of different bed materials in biomass gasification conditions / S. Tuomi, N. Kaisalo, P. Simell, E. Kurkela // Fuel. 2015. V. 158. P. 293–305. (DOI: 10.1016/j.fuel.2015.05.051).
19. Catalytic gasification of woody biomass in an air–blown fluidized–bed reactor using Canadian limonite iron ore as the bed material / S. Hurley, C. Xu, F. Preto, Y. Shao, H. Li, J. Wang, G. Tourigny // Fuel. 2012. V. 91. P. 170–176. (DOI: 10.1016/j.fuel.2011.07.016).
20. Biomass gasification in a catalytic fluidized reactor with beds of different materials / F. Miccio, B. Piriou, G. Ruoppolo, R. Chirone // Chemical Engineering Journal. 2009. V. 154. P. 369–374. (DOI: 10.1016/j.cej.2009.04.002).
21. H2–rich syngas production by fluidized bed gasification of biomass and plastic fuel / G. Ruoppolo, P. Ammendola, R. Chirone, F. Miccio // Waste Management. 2012. V. 32. No. 4. P. 724–732. (DOI: 10.1016/j.wasman.2011.12.004).
22. Specific Features of Filtration Combustion of a Pyrolized Solid Fuel / E.A. Salganskii, V.M. Kislov, S.V. Glazov, A.F. Zholudev, G.B. Manelis // Combustion, Explosion, and Shock Waves. 2010. V. 46. No. 5. P. 528–532. (DOI: 10.1007/s10573–010–0069–6).
23. Hydrogen–rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of temperature and steam on gasification performance / S. Luo, B. Xiao, Z. Hu, S. Liu, X. Guo, M. He // International Journal of Hydrogen Energy. 2009. V. 34. P. 2191–2194. (DOI: 10.1016/j.ijhydene.2008.12.075).
24. Donskoy I.G. Tar formation influence on fixed bed air–blown biomass gasification process efficiency // Proceedings of the higher educational institutions. Energy sector problems.– 2015. – No. 5–6. – P. 93–100. [in Russian].
25. Coal gasification process simulations using combined kinetic–thermodynamic models in one–dimensional approximation / I.G. Donskoy, V.A. Shamansky, A.N. Kozlov, D.A. Svishchev // Combustion Theory and Modelling. 2017. V. 21. No. 3. P. 529–559. (DOI: 10.1080/13647830.2016.1259505).
26. Donskoi I.G. Process simulation of the co–gasification of wood and polymeric materials in a fixed bed // Solid Fuel Chemistry. – 2018. – V. 52. – No. 2. – P. 121–127. (DOI: 10.3103/S0361521918020027)
27. Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal / M.-H. Cho, T.-Y. Mun, Y.-K. Choi, J.-S. Kim // Energy. 2014. V. 70. P. 128–134. (DOI: 10.1016/j.energy.2014.03.097).
28. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst / M. Artetxe, M.A. Nahil, M. Olazar, P.T. Williams // Fuel. 2016. V. 184. P. 629–636. (DOI: 10.1016/j.fuel.2016.07.036).
29. Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts / G. Duman, T. Watanabe, M.A. Uddin, J. Yanik // Fuel Processing Technology. 2014. V. 126. P. 276–283. (DOI: 10.1016/j.fuproc.2014.04.035).
30. Acidic and basic surface sites of zirkonia-based biomass gasification gas clean-up catalysts / T. Viinikainen, H. Ronkkonen, H. Bradshaw, H. Stephenson, S. Airaksinen, M. Reinkainen, P. Simell, O. Krause // Applied Catalysis A: General. 2009. V. 362. P. 169–177. (DOI: 10.1016/j.apcata.2009.04.037).
31. Han J., Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview // Renewable and Sustainable Energy Reviews. 2008. V. 12. P. 397–416. (DOI: 10.1016/j.rser.2006.07.015).
32. Study on the combustion kinetic characteristics of biomass tar under catalysts / C. Li, Y. Yamamoto, M. Suzuki, D. Hirabayashi, K. Suzuki // Journal of Thermal Analysis and Calorimetry. 2009. V. 95. No. 3. P. 991–997. (DOI: 10.1007/s10973-008-9126-8).
33. Olivine catalysts for methane- and tar-steam reforming / J.N. Kuhn, Z. Zhao, L.G. Felix, R.B. Slimane, C.W. Choi, U.S. Ozkan // Applied Catalysis B: Environmental. 2008. V. 81. P. 14–26. (DOI: 10.1016/j.apcatb.2007.11.040).
34. Reactive bed materials for improved biomass gasification in a circulating fluidized bed reactor / J. Pecho, T.J. Schidhauer, M. Sturzenegger, S. Biollaz, A. Wokaun // Chemical Engineering Science. 2008. V. 63. P. 2465–2476. (DOI: 10.1016/j.ces.2008.02.001).
35. Grabner M. Industrial coal gasification technologies covering baseline and high–ash coal. – Wiley–VCH, 2015. 376 p.
36. Fang X., Jia L. Experimental study on ash fusion characteristics of biomass // Bioresource Technology. 2012. V. 104. P. 769–774. (DOI: 10.1016/j.biortech.2011.11.055).
Review
For citations:
Donskoy I.G. MATHEMATICAL MODELLING OF WOOD GASIFICATION WITH TARRY PRODUCTS DECOMPOSITION ON ACTIVE MATERIAL PARTICLES. Power engineering: research, equipment, technology. 2018;20(11-12):107-117. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-11-12-107-117