Preview

Power engineering: research, equipment, technology

Advanced search

The water heat pump operation under frost conditions on the evaporator surface

https://doi.org/10.30724/1998-9903-2019-21-3-4-44-51

Abstract

The conditions and characteristics of ice formation on the pipe surface of a heat pump evaporator which depends on water ( at a temperature lower than 280 K) as a low-grade energy source are investigated experimentally. Under the operating conditions of this heat pump, the ice thicknesses and temperatures values at freon pipe wall and for water in the evaporator are registered. The results allowed us to make a conclusion of the possibility to use a water source heat pump in practical applications under the conditions of partial ice coverage for the evaporator surface to heat up water in a condenser to 313 K. It is established from experiments that with the decrease in water initial temperature in the evaporator by 6 degrees, the maximum value of formed ice thickness on the evaporator surface is increased by 30 %. The dependence of Nusselt number on the natural convection characteristics undergoing phase change is established. 

About the Authors

V. I. Maksimov
National Research Tomsk Polytechnic University
Russian Federation

Vyacheslav I. Maksimov.



A. Saloum
National Research Tomsk Polytechnic University
Russian Federation

Amer Saloum.



References

1. Experimental study of a new multifunctional water source heat pump system / X. Liu, F. Li, Q. Guo,Y. Zhang, T. Sun // Energy Build. 2016. Vol. 111. P. 408–423. DOI: 10.1016/j.enbuild.2015.11.069.

2. Heat pump placement, connection and operational modes in European district heating / M. A. Sayegh, P. Jadwiszczak, B.P. Axcell, E. Niemierka, K. Bryś, H. Jouhara // Energy Build. 2018. Vol. 166. P. 122–144. DOI: 10.1016/j.enbuild.2018.02.006.

3. Liu Z., Tan H., Li Z. Heating and Cooling Performances of River-Water Source Heat Pump System for Energy Station in Shanghai // Procedia Eng. 2017. Vol. 205. P. 4074–4081. DOI: 10.1016/j.proeng.2017.09.898.

4. Piccolroaz S., Toffolon M., Majone B. A simple lumped model to convert air temperature into surface water temperature in lakes // Hydrol. and Earth System Sciences. 2013. Vol. 8. P. 3323–3338. DOI: 10.5194/hess-17-3323-2013.

5. Livingstone D.M., Lotter A.F. The relationship between air and water temperatures in lakes of the Swiss Plateau:a case study with palaeolimnological implication // J. Paleolimnol. 1998. Vol. 9. P. 181–198.

6. Wu W., Skye H.M. Progress in ground-source heat pumps using natural refrigerants // Int. J. of Refrig. 2018. Vol. 92. P. 70–85. DOI: 10.1016/j.ijrefrig.2018.05.028.

7. Valizade L. Ground Source Heat Pumps // J. Clean Energy Technol. 2013. Vol. 3. P. 216–219.

8. Todoran T.P., Balan M.C. Long term behavior of a geothermal heat pump with oversized horizontal collector // Energy Build. 2016. Vol. 133. P. 799–809. DOI: 10.1016/j.enbuild.2016.10.037.

9. Zhang N., Wang Z. Review of soil thermal conductivity and predictive models // Int. J. Therm. Sci. Elsevier Masson SAS. 2017. No. 117. P. 172–183. DOI: 10.1016/j.ijthermalsci.2017.03.013.

10. Kharchenko V.V., Sychev A.O. Use of low potential heat of surface water in heat pump heat supply systems farmhouse // Scientific Herald of NULES of Ukraine. Series: Technique and energy of APK. 2014. № 194-2. P. 19–24 (in Russsian).

11. Kharchenko V.V., Sychev A.O. Optimization of low temperature circuit of surface water heat pump based system // International Scientific Journal for Alternative Energy and Ecology. 2013. № 7 (129). P. 31-36 (in Russsian).

12. Zhou C., Ni L., Yao Y. Heat transfer analysis of multi-row helically coiled tube heat exchangers for surface water-source heat pump // Energy. 2018. Vol. 163. P. 1032–1049. DOI: 10.1016/j.energy.2018.08.190.

13. Maksimov V.I., Nagornova T.A., Chernyshev V.S. Conditions and characteristics of water crystallization on the working surface of evaporator heat pumps in reservoirs with low temperatures // MATEC Web of Conferences: Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment. Tomsk, 2015. Vol. 23, № 01051 (1-8). DOI: 10.1051/matecconf/20152301051.

14. Maksimov V.I., Saloum A. An experimental study of the effect of water bodies temperature on water heat pump performance // MATEC Web of Conferences. 2018. Vol. 194, № 01050 (1-4). DOI: 10.1051/matecconf/201819401050.

15. Piccolroaz S., Toffolon M., Majone B. A simple lumped model to convert air temperature into surface water temperature in lakes // Hydrology and earth system sciences. 2013. Vol. 8. P. 3323–3338. DOI:10.5194/hess-17-3323-2013.

16. Livingstone D.M., Lotter A.F. The relationship between air and water temperatures in lakes of the Swiss Plateau:a case study with palaeolimnological implication // Journal Paleolimnol. 1998. Vol. 9. P. 181–198. URL: https://link.springer.com/article/10.1023/A:1007904817619.

17. Sebarchievici C., Dan D., Sarbu I. Performance assessment of a ground-coupled heat pump for an office room heating using radiator or radiant floor heating systems // Procedia Engineering. 2015. Vol. 118. P. 88– 100. DOI: 10.1016/j.proeng.2015.08.407.

18. Performance evaluation of different heating terminals used in air source heat pump system / H. Bin, R.Z. Wang, B. Xiao, L. He, W. Zhang, Sh. Zhang // International Journal of Refrigeration. 2019. Vol. 98. P. 274–282. DOI: 10.1016/j.ijrefrig.2018.10.014.


Review

For citations:


Maksimov V.I., Saloum A. The water heat pump operation under frost conditions on the evaporator surface. Power engineering: research, equipment, technology. 2019;21(3-4):44-51. https://doi.org/10.30724/1998-9903-2019-21-3-4-44-51

Views: 517


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)