Dynamic reprogramming methods for a mobile robot with modular architecture.
https://doi.org/10.30724/1998-9903-2022-24-3-175-184
Abstract
THE PURPOSE of this article is to analyze existing and promising methods of dynamic reprogramming suitable for use in a mobile robot with a modular control system architecture. The article briefly describes functional-modular architecture of the control system (CS) of a mobile robot implementing distributed computing, which makes it possible to ensure the real-time operation of the modules’ CS even when it’s built using low-power embedded systems. The article describes features of 4 different methods according to 6 criteria: applicability on different embedded systems, the amount of operating and program memory required, the speed of calculations, the theoretical complexity of creating an implementation of the method, the theoretical complexity of using the method by the end user (tuner), the flexibility of the method being created. The results of this study are given in form of recommendations for the application of the considered methods in different environments and purposes.
About the Authors
V. P. AndreevRussian Federation
Victor P. Andreev
P. F. Pletenev
Russian Federation
Pavel F. Pletenev - engineer
References
1. Popov E.P., Pis'mennyi G.V. Osnovy robototekhniki: vvedenie v spetsial'nost'. M.: Vysshaya shkola, 1990. 224 p.
2. Lopota A.V., Yurevich E.I. Etapy i perspektivy razvitiya modul'nogo printsipa postroeniya robototekhnicheskikh system. Nauchno-tekhnicheskie vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravlenie. 2013. № 1. Pp. 98-103.
3. Platonov A.K. Robototekhnika lunnoi bazy. XXXIV Chteniya po kosmonavtike. IPM im. M.V. Keldysha RAN, 2010.
4. Andreev V.P., Kim V.L., Eprikov S.R. Apparatno-programmnyi freimvork dlya razrabotki modul'nykh mobil'nykh robotov s ierarkhicheskoi arkhitekturoi. Izvestiya YuFU. Tekhnicheskie nauki. Razdel IV. Svyaz', navigatsiya i navedenie. Taganrog: Izd-vo FGAOU VO Yuzhnyi federal'nyi universitet, ISSN 1999-9429. 2020. №1(211). p. 199-218.
5. Andreev V.P., Kim V.L., Pletenev P.F. Printsip polnoi funktsional'nosti modulei v geterogennykh modul'nykh mobil'nykh robotakh. Ekstremal'naya robototekhnika (ER-2017). Trudy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii. Sankt-Peterburg: IPTs OOO «Politekhnika-print», 2017. pp.81-91.
6. Andreev V.P., Pletenev P.F. Metod informatsionnogo vzaimodeistviya dlya sistem raspredelennogo upravleniya v robotakh s modul'noi arkhitekturoi. Trudy SPIIRAN. 2018. № 2 (57).pp. 134-160.
7. Andreev V.P. Sistema upravleniya modul'nykh mobil'nykh robotov kak mul'tiagentnaya sistema s piramidal'noi topologiei. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki", ISSN 1560-3644. 2020. № 3(207). pp. 41-54.
8. Herbrechtsmeier, T. Korthals, T. Schopping, U. Ruckert AMiRo: a modular & customizable open-source mini robot platform. 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2016. pp.687-692.
9. Design of Transmote: a Modular Self-Reconfigurable Robot with Versatile Transformation Capabilities. Guifang Qiao, Guangming Song, Jun Zhang, Hongtao Sun, Weiguo Wang & Aiguo Song. Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. 2012. pp.1331-1336.
10. Baca J., Ferre M., Aracil R. A heterogeneous modular robotic design for fast response to a diversity of tasks. Robotics and Autonomous Systems. 2012. vol. 60. no. 4. pp. 522–531.
11. R2P: An open source hardware and software modular approach to robot prototyping / A. Bonarini, M. Matteucci, M. Migliavacca, D. Rizzi . Robotics and Autonomous Systems. 2014. No.62. pp.1073-1084.
12. D. P. Losada, J. L. Fernández, E. Paz, Rafael Sanz Distributed and modular CAN-based architecture for hardware control and sensor data integration. Sensors. 2017. No.17. pp.1013-1030.
13. EmSBoT: A lightweight modular software framework for networked robotic systems / L. Peng, F. Guan, L. Perneel, H. Fayyad-Kazan and M. Timmerma. 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, 2016, pp.216-221. doi: 10.1109/ACTEA.2016.7560142.
14. AndreevVictor & Pletenev Pavel. Problems of Choosing an Intermodule Information Interaction Protocol for Mobile Robots with Modular Control System Architecture, Proceedings of the 32nd DAAAM International Symposium, pp.0151-0157, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-33-4, ISSN 1726-9679, Vienna, Austria.
15. Kirienko P, Dixon S, et al. OpenCyphal: Open technology for real-time intravehicular distributed computing and communication based on modern networking standards. URL: https://opencyphal.org/specification/Cyphal_Specification.pdf.
16. Lobdell M. Robust over-the-air firmware updates using program flash memory swap on kinetis microcontrollers // Freescale Application Note, p. AN4533. 2012.
17. Jaouhari S. E., Bouvet E. Secure firmware Over-The-Air updates for IoT: Survey, challenges, and discussions // Internet of Things. 2022. (18). C. 100508.
18. Zandberg K., Baccelli E. Minimal virtual machines on IoT microcontrollers: The case of berkeley packet filters with rbpf // arXiv preprint arXiv:2011.12047. 2020.
Review
For citations:
Andreev V.P., Pletenev P.F. Dynamic reprogramming methods for a mobile robot with modular architecture. Power engineering: research, equipment, technology. 2022;24(3):175-184. (In Russ.) https://doi.org/10.30724/1998-9903-2022-24-3-175-184