Obstacle shape determination by mobile robot sensor system using GP2Y0A (Sharp) type IR distance sensors
https://doi.org/10.30724/1998-9903-2024-26-1-195-207
Abstract
PURPOSE. When organizing a mobile robot (MR) movement in a non-deterministic environment, the SLAM problem arises, which includes the detection of an obstacle presence by the MR sensor system, the distance to the obstacle and its shape. To solve this problem, an infrared (IR) analog distance sensor is often used, the information flow from which is relatively small and can be processed in real time using low-performance microcontrollers. However, such a sensor can only detect an obstacle and determine а distance to a certain point on its surface. The goal is to develop a method for determining both а distance to an obstacle and its shape. When setting up experiments on the use of an analog sensor of the GP2Y0A (SHARP) type, a problem was revealed associated with the occurrence of not only fluctuation noise in а data communication channel, but also artifacts – anomalous signal values appear with random periodicity. It is necessary to determine the source of such interference, propose a method for estimating its parameters and a way to minimize its influence.
METHODS. To determine the shape of an obstacle, a differential method is proposed based on the use of several readings of a scanning IR distance sensor. As an indicator of the “noisiness” of the channel, it is proposed to use the number of sensor signal values that exceed the average signal value by 1σ, 2σ, 3σ, 4σ and 5σ. The use of standard methods for filtering abnormal values of a sensor signal leads to significant delays in a response of the MR control system. This is unacceptable, because at the executive level of a control system it is required to provide a "hard" real-time mode.
RESULTS. The article presents the results of experiments showing the conditions for applying the differential method for determining a shape of an obstacle, the source of anomalous signal values is identified and a method for minimizing them is proposed. A method for increasing the practical use range of a nonlinear IR sensor conversion function is also proposed.
CONCLUSION. The number and magnitude of abnormal values depend on a communication channel length. When using analog sensors, it is necessary to convert an output signal into digital form using analog-to-digital converters (ADCs) in an integrated design, structurally bringing the ADC as close as possible to the signal source.
Keywords
About the Author
V. P. AndreevRussian Federation
Victor P. Andreev
Moscow
References
1. Durrant-Whyte H., Bailey T. Simultaneous Localisation and Mapping (SLAM): Part I. The Essential Algorithms // Robotics and Automation Magazine. 2006. Vol. 13, N 2. pp. 99– 110.
2. Kawewong A., Tongprasit S., Hasegawa O., et al. Online and Incremental Appearance-Based SLAM in Highly Dynamic Environments // International Journal of Robotics Research. 2011. Vol. 30, N 1. pp. 33–55.
3. Kamil F., Tang SH, Khaksar W., et al. A Review on Motion Planning and Obstacle Avoidance Approaches in Dynamic Environments // Advances in Robotics & Automation. 2015. Vol. 4, Issue 2, 1000134. pp. 1-8.
4. Infrakrasnyye datchiki dlya robotov. Available at: https://shamrin.ru/infrakrasnye-datchiki-dlya-robotov. Accessed: 18 Nov 2023. (In Russ).
5. Opredeleniye rasstoyaniya do prepyatstviya s pomoshch'yu infrakrasnogo datchika uchebnoy sistemy ROBOTINO. Available at: https://masters.donntu.ru/2016/fknt/gorin/library/article6.htm. Accessed: 18 Nov 2023. (In Russ).
6. Andreev V., Tarasova V. The Mobile Robot Control for Obstacle Avoidance with an Artificial Network Application. In: Proceedings of the 30<sup>th</sup> DAAAM International Symposium, B. Katalinic (Ed.). Published by DAAAM International. Vienna, Austria; 2019. pp. 0724–0732.
7. Andreyev VP., Tarasova VE. Identifikatsiya ob"yektov s pomoshch'yu kompleksirovaniya pokazaniy ul'trazvukovykh i infrakrasnykh datchikov iskusstvennoy neyronnoy set'yu [Object Identification by Ultrasonic and Infrared Sensors Data Fusion Using Artificial Neural Network] // Trudy 31-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii EKSTREMAL'NAYA ROBOTOTEKHNIKA. 28-29 sentyabrya 2020. Sankt-Peterburg: OOO «Izdatel'sko-poligraficheskiy kompleks «Gangut», 2020. – Pp.12-18. (In Russ.).
8. Problemy s funktsionirovaniyem analogovykh kanalov. Available at: https://imena-dlya-devochek.ru/. Accessed: 18 Nov 2023. (In Russ).
9. Vliyaniye elektromagnitnykh poley na tsifrovoy signal. Available at: https://queryzone.ru/article/96202-vliyanie-elektromagnitnykh-pomekh-na-tsifrovoj-signal. Accessed: 18 Nov 2023. (In Russ).
10. Platt CH., Yansson F. Entsiklopediya elektronnykh komponentov, Sankt-Peterburg: BKHV-Peterburg, 2017. 224 P. (In Russ.).
11. Infrakrasnyy datchik rasstoyaniya: opisaniye, podklyucheniye, skhema, kharakteristiki. Available at: https://3d-diy.ru/wiki/arduino-datchiki/infrakrasnyj-datchik-rasstojanija. Accessed: 18 Nov 2023. (In Russ).
12. Passport IK-datchik GP2Y0A21YK0F. Available at: https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf. Accessed: 18 Nov 2023. (In Russ).
13. Bakulev Kh.S. Opredeleniye razmerov prepyatstviya IK-datchikom rasstoyaniya SHARP 2Y0A21 v sensornoy sisteme mobil'nogo robota. Materialy zaklyuchitel'nogo etapa studencheskoy nauchno-prakticheskoy konferentsii «Avtomatizatsiya i informatsionnyye tekhnologii (AIT-2022)». Sbornik dokladov. – M.: FGBOU VO «MGTU «STANKIN», 2022. – S. 8-10. Available at: https://stankin.ru/uploads/files/file_62bc0e97cc696.pdf. Accessed: 18 Nov 2023. (In Russ).
14. Andreyev V.P., Tarasova V.E. Opredeleniye formy prepyatstviy mobil'nym robotom s pomoshch'yu skaniruyushchikh uglovykh peremeshcheniy ul'trazvukovogo datchika // Mekhatronika, Avtomatizatsiya, Upravleniye. M.: Izd-vo «Novyye tekhnologii». 2017. No 11, Vol 18. Pp.759 – 763. (In Russ).
15. Andreyev VP, Tarasova VE. Identifikatsiya ob"yektov s pomoshch'yu skaniruyushchikh uglovykh peremeshcheniy ul'trazvukovogo datchika / Ekstremal'naya robototekhnika (ER-2017). Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii; 02-03 noyabrya 2017. Sankt-Peterburg: IPTS OOO «Politekhnika-print», 2017. Pp. 222–230. (In Russ).
16. Shagovyy̆ dvigatel' 28BYJ-48. Available at: https://3d-diy.ru/wiki/arduino-mechanics/stepper-motor-28BYJ-48. Accessed: 18 Nov 2023. (In Russ).
17. Pasport drayvera shagovogo dvigatelya ULN2003. Available at: https://www.st.com/resource/en/datasheet/uln2001.pdf. Accessed: 18 Nov 2023. (In Russ).
Review
For citations:
Andreev V.P. Obstacle shape determination by mobile robot sensor system using GP2Y0A (Sharp) type IR distance sensors. Power engineering: research, equipment, technology. 2024;26(1):195-207. (In Russ.) https://doi.org/10.30724/1998-9903-2024-26-1-195-207