Обзор современных методов защиты и диагностики состояния интеллектуальных систем электроснабжения
https://doi.org/10.30724/1998-9903-2025-27-4-3-29
Аннотация
Актуальность исследования заключается в развитии интеллектуальных систем электроснабжения (ИСЭ), что подразумевает совершенствование существующих, внедрение и совершенствование современных защит, систем диагностики, мониторинга элементов высоковольтного электрооборудования (ВЭ).
Цель. Рассмотреть современные, а также пути развития и возможности интеграции систем защиты и диагностики кабельно-воздушных линий (КВЛ) ИСЭ.
Методы. При решении поставленной задачи был проведен сравнительный анализ причин, которые приводят к срабатыванию защит КВЛ ИСЭ, недостатки защит и возможные пути их совершенствования. Были проанализированы современное состояние защит, диагностики, мониторинга КВЛ ИСЭ и пути их развития. В том числе рассмотрены перспективные методы диагностики изоляции, муфтовых соединений кабельных линий (КЛ) по характеристикам частичных разрядов (ЧР), скруток воздушных линий (ВЛ) по данным тепловизионного обследования.
Результаты. В статье был проведен обзор существующих защит и систем диагностики элементов КВЛ ИСЭ высокого и среднего классов напряжения. Рассмотрены актуальные вопросы развития защит ИСЭ в том числе распределенной генерации в состав которых входят генераторы возобновляемых источников электроэнергии (ВИЭ) для того, чтобы обеспечить бесперебойную поставку электроэнергии потребителям в системах распределенной генерации. Рассмотрены актуальные вопросы развития современных методов диагностики КВЛ до уровня систем мониторинга в том числе с применением методов тепловизионного обследования, диэлектрической импедансной спектроскопии (ИС), метода ЧР.
Заключение. Развитие ИСЭ будет актуальной задачей еще длительное время. Наиболее перспективными защитами ИСЭ будут адаптивные защиты с применением искусственных нейронных сетей (ИНС), в которые будут интегриро ваны наиболее современные математические алгоритмы и методы диагностики, в первую очередь технологии «умных сетей» (Smart Grids), технология микросетей (Microgrids), метод независимых компонент (МНК), ЧР, тепловизионного обследования, электрической импедансной спектроскопии (ИС), диэлектрической спектроскопии (ДС).
Ключевые слова
Об авторах
А. М. ГатауллинРоссия
Гатауллин Айрат Мухамедович – канд. техн. наук, доцент кафедры «Релейная защита и автоматизация электроэнергетических систем» (РЗА)
г. Казань
А. Н. Гавриленко
Россия
Гавриленко Андрей Николаевич – канд. физ.-мат. наук, доцент кафедры «Релейная защита и автоматизация электроэнергетических систем» (РЗА)
г. Казань
Ю. В. Писковацкий
Россия
Писковацкий Юрий Валерьевич – канд. техн. наук, доцент, заведующий кафедрой «Релейная защита и автоматизация электроэнергетических систем» (РЗА)
г. Казань
Список литературы
1. Dewangan F., Abdelaziz A.Y., Biswal M. Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review // Energies. 2023. Vol.16. pp. 1404.
2. Al-Saadi M., Al-Greer M., Short M. Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey // Energies. 2023. Vol. 16. pp. 1608.
3. Hussain S., El-Bayeh C.Z., Lai C., Eicker U. Multi-Level Energy Management Systems Toward a Smarter Grid: A Review // IEEE Access. 2021. Vol. 9. pp. 71994–72016.
4. Rind Y.M., Raza M.H., Zubair M., et al. Smart Energy Meters for Smart Grids an Internet of Things Perspective // Energies. 2023. Vol. 16. pp. 1974.
5. Simion C.-P., Verdeș C.-A., Mironescu A.-A., et al. Digitalization in Energy Production Distribution and Consumption: A Systematic Literature Review // Energies. 2023. Vol. 16. pp. 1960.
6. Mahela O.P., Khosravy M., Gupta N., et al. Comprehensive overview of multi-agent systems for controlling smart grids // CSEE J. Power Energy Syst. 2022. Vol. 8. pp. 115–131.
7. Fabrício M.A., Behrens F.H., Bianchini D. Monitoring of Industrial Electrical Equipment Using IoT // IEEE Lat. Am. Trans. 2020. Vol. 18. pp. 1425–1432.
8. Wang S., Zhou L., Wang T., et al. Fast protection strategy for DC transmission lines of MMCbased MT-HVDC grid // Chin. J. Electr. Eng. 2021. Vol. 7. pp. 83–92.
9. Jiang J.-A., Chiu H.-C., Yang Y.-C., et al. On Real-Time Detection of Line Sags in Overhead Power Grids Using an IoT-Based Monitoring System: Theoretical Basis, System Implementation, and Long-Term Field Verification // IEEE Internet of Things Journal. 2022. Vol. 9, N 15. pp. 389–395.
10. Klyushkin N.G., Lachugin V.F. A Statistical Overview of Fault Location Methods and Problems in Calculating and Locating Faults in 110 kV (and Higher) Power Transmission Lines // Power Technol. Eng. 2020. Vol. 54. pp. 250–254.
11. Chen B. Fault Statistics and Analysis of 220-kV and above Transmission Lines in a Southern Coastal Provincial Power Grid of China // IEEE Open Access J. Power Energy. 2020. Vol. 7. pp. 122–129.
12. Ebtsam A.H., Bishoy E.S., Ebrahim A.B. Impact and assessment of the overvoltage mitigation methods in low-voltage distribution networks with excessive penetration of PV systems: A review // Electrical Energy Systems. 2021. Vol. 31, N 12. pp. 1–31.
13. Probst F.L., Beltle M., Tenbohlen S. Measurement of Transient Overvoltages by Capacitive Electric Field Sensors // Sensors. 2024. Vol. 24, N 5 pp. 1357. https://doi.org/10.3390/s24051357
14. Reddy S.A., Kumari M.S. A review of switching overvoltage modeling in UHV AC transmission lines // Electric Power Systems Research. 2024. Vol. 236 pp. 110902. https://doi.org/10.1016/j.epsr.2024.110902
15. He Q., Ding L., Kong Z.-M., et al. Distributed Scheme for Line Overload Mitigation with Linearized AC Power Flow // IEEE Trans. Circuits Syst. II Express Briefs. 2022. Vol. 69. pp. 2877–2881.
16. Zhang X., Wang X., Li Z., et al. Optimization of Impedance-Accelerated Inverse-Time Over-Current Protection Based on Improved Quantum Genetic Algorithm // Energies. 2023. Vol. 16. pp. 1119.
17. Ding Z., Yu K., Wang C., et al. Transmission Line Overload Risk Assessment Considering Dynamic Line Rating Mechanism in a High-Wind-Penetrated Power System: A Data-Driven Approach // IEEE Trans. Sustain. Energy. 2022. Vol. 13. pp. 1112–1122.
18. Al Talaq M., Al-Muhaini M. Optimal Coordination of Time Delay Overcurrent Relays for Power Systems with Integrated Renewable Energy Sources // Energies. 2022. Vol. 15. pp. 6749.
19. Foqha Т., Khammash М., Alsadi S. Optimal Coordination of Directional Overcurrent Relays Using Hybrid Firefly–Genetic Algorithm // Energies. 2023. Vol. 16, N 14. pp. 5328.
20. Hong L., Rizwan M., Wasif M., at al. User-Defined Dual Setting Directional Overcurrent Relays with Hybrid Time Current-Voltage Characteristics-Based Protection Coordination for Active Distribution Network // IEEE Access. 2021. Vol. 9. pp. 62752-62769.
21. Li B., Li C., Guo F., et al. Overcurrent Protection Coordination in a Power Distribution Network with the Active Superconductive Fault Current Limiter // IEEE Trans. Appl. Supercond. 2014. Vol. 24. pp. 1–4.
22. Rajesh P., Kannan R., Vishnupriyan J., et al. Optimally detecting and classifying the transmission line fault in power system using hybrid technique // ISA Transactions. 2022. Vol. 130. pp. 253-264.
23. Kordestani M., Saif M., Orchard M.E., et al. Failure Prognosis and Applications—A SurveyRecent Literature // IEEE Trans. Reliab. 2021. Vol. 70. pp. 728–748.
24. Nazir M.I., Hussain I., Ahmad A., et al. A. System Modeling and Reliability Assessment of Microgrids: A Review // Sustainability. 2022. Vol. 14, N 1. pp. 126.
25. Escobar J.J.M., Matamoros O.M., Padilla R.T., et al. A Comprehensive Review on Smart Grids: Challenges and Opportunities // Sensors. 2021. Vol. 21, N 21. pp. 6978.
26. Nabatirad M., Razzaghi R., Bahrani B. BahraniAutonomous power balance in hybrid AC/DC microgrids // International Journal of Electrical Power & Energy Systems. 2023. Vol. 146. pp. 108752.
27. Gallegos J., Arévalo P., Montaleza C., at al. Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review // Sustainability. 2024. Vol. 16, N 2. pp. 698.
28. Jamil F., Iqbal N., Imran, et al. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid // IEEE Access. 2021. Vol. 9. pp. 39193-39217.
29. Wang Y., Zhang D., Li Y., et al. Enhancing Power Grid Resilience With Blockchain-Enabled Vehicle-to-Vehicle Energy Trading in Renewable Energy Integration // IEEE Transactions on Industry Applications. 2024. Vol. 60, N 2. pp. 2037–2052.
30. Shams M. H., Niaz H., Hashemi B., et al. Artificial intelligence-based prediction and analysis of the oversupply of wind and solar energy in power systems // Energy Conversion and Management. 2021. Vol. 250. pp. 114892.
31. Qiu M. Study on Isolated Island Detection Technology of Distributed PV Grid System. 2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI); 17-19 April 2023; Prague, Czech Republic. IEEE; 2023. pp. 539-544.
32. Mishra A., Jena P. A Scheduled Intentional Islanding Method Based on Ranking of Possible Islanding Zone // IEEE Trans. Smart Grid. 2021. Vol. 12. pp. 1853–1866.
33. Succetti F., Rosato A., Araneo R., et al. Challenges and Perspectives of Smart Grid Systems in Islands: A Real Case Study Energies // Energies. 2023. Vol. 16, N 2. pp. 583.
34. Li X., Wang L., Yan N., et al. Cooperative Dispatch of Distributed Energy Storage in Distribution Network with PV Generation Systems // IEEE Trans. Appl. Supercond. 2021. Vol. 31. pp. 1–4.
35. Ding T., Wang Z., Qu M., et al. A Sequential Black-Start Restoration Model for Resilient Active Distribution Networks // IEEE Trans. Power Syst. 2022. Vol. 37. pp. 3133–3136.
36. Zhao J., Zhang Q., LIU Z., et al. A Distributed Black-Start Optimization Method for Global Transmission and Distribution Network // IEEE Trans. Power Syst. 2021. Vol. 36. pp. 4471–4481.
37. Furse C.M., Kafal M., Razzaghi R., et al. Fault Diagnosis for Electrical Systems and Power Networks: A Review // IEEE Sens. J. 2021. Vol. 21. pp. 888–906.
38. Han C., Gao K., Changet W., et al. Research on the Evolution Mechanism of Partial Discharge Signals for Arcing Faults in Transformers // IEEE Access. 2025. Vol. 13. pp. 8023-8031.
39. Jakaria A.H.M., Rahman M.A., Gokhale A. Resiliency-Aware Deployment of SDN in Smart Grid SCADA: A Formal Synthesis Model // IEEE Trans. Netw. Serv. Manag. 2021. Vol. 18. pp. 1430–1444.
40. Majeed A.A., Altaie A.S., Abderrahim M. et al. A Review of Protection Schemes for Electrical Distribution Networks with Green Distributed Generation // Energies. 2023. Vol. 16, N 22. pp. 7587.
41. Bui D.M., Le P.D., Nguyen T.P., et al. An Adaptive and Scalable Protection Coordination System of Overcurrent Relays in Distributed-Generator-Integrated Distribution Networks // Appl. Sci. 2021. Vol. 11, N 18. pp. 8454.
42. Martínez-Figueroa G.d.J., Córcoles-López F., Bogarra S. FPGA-Based Smart Sensor to Detect Current Transformer Saturation during Inrush Current Measurement // Sensors. 2023. Vol. 23, N 2. pp. 744.
43. Peng F., Gao H., Huang J., et al. Power Differential Protection for Transformer Based on Fault Component Network // IEEE Trans. Power Deliv. 2023. Vol. 38. pp. 2464–2477.
44. Darwish H.A., Taalab M.I., Ahmed E.S. Investigation of power differential concept for line protection // IEEE Trans. Power Deliv. 2005. Vol. 20. pp. 617–624.
45. Liu S., Wang B., Zhao Y., et al. Novel Differential Protection Approach of UHV AC Transmission Lines Based on Tellegen’s Quasi-Power Theorem // IEEE Trans. Power Deliv. 2022. Vol. 37. pp. 1264–1274.
46. Vazquez E., Castruita J., Chacon O.L., et al. A New Approach Traveling-Wave Distance Protection—Part I: Algorithm // IEEE Trans. Power Deliv. 2007. Vol. 22. pp. 795–800.
47. Sinclair A., Finney D., Martin D., et al. Distance Protection in Distribution Systems: How It Assists with Integrating Distributed Resources // IEEE Trans. Ind. Appl. 2014. Vol. 50. pp. 2186–2196.
48. Prenc R., Rojnić M., Franković D., et al. On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks // Energies. 2022. Vol. 15. pp. 6528.
49. Węgierek P., Kostyła D., Lech M. Directions of Development of Diagnostic Methods of Vacuum Medium-Voltage Switchgear // Energies. 2023. Vol. 16, N 5. pp. 2087.
50. Torres B.S., Borges da Silva L.E., Salomon C.P., et al. Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks // Energies. 2022. Vol. 15, N 7. pp. 2518.
51. Bindi M., Piccirilli M.C., Luchetta A., et al. A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines // Energies. 2023. Vol. 16, N 21. pp. 7317.
52. Guillén-López D., Serrano-Guerrero X., Barragán-Escandón A., et al. Transient and Steady-State Evaluation of Distributed Generation in Medium-Voltage Distribution Networks // Energies. 2024. Vol. 17, N 22. pp. 5783.
53. Li Z., Zhang Y., WuH., Suzuki S., et al. Design and Application of a UAV Autonomous Inspection System for High-Voltage Power Transmission Lines // Remote Sens. 2023. Vol. 15, N 3. pp. 865.
54. Bindi M., Piccirilli M.C., Luchetta A., et al. A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines // Energies. 2023. Vol. 16, N 21. pp. 7317.
55. Liao C., Yi Y., Chen T., et al. Detecting Broken Strands in Transmission Lines Based on Pulsed Eddy Curren // Metals. 2022. Vol. 12, N6. pp. 1014.
56. Rondineau A., Gaillet L., Dieng L., et al. Degradation of Steel Wires in Bimetallic Aluminum– Steel Conductors Exposed to Severe Corrosion Conditions // Corros. Mater. Degrad. 2022. Vol. 3, N 4. pp. 646-660.
57. Jurkiewicz B., Smyrak B. Studies on the Evolution of Fatigue Strength of Aluminium Wires for Overhead Line Conductors // Materials. 2024. Vol. 17, N 11. pp. 2537.
58. Gao J., Wang L., Wu S., et al. Prediction of Breakdown Voltage of Equipotential Live-Line Work Air Gaps in Transmission Lines: A Computational Discharge Model // IEEE Transactions on Electromagnetic Compatibility. 2022. Vol. 64, N 6, pp. 1932-1940.
59. Govindarajan S., Morales A., Ardila-Rey J.A., et al. A review on partial discharge diagnosis in cables: Theory, techniques, and trends // Measurement. 2023. Vol. 216. pp. 112882.
60. Zhang X., Pang B., Liu Y., et al. Review on Detection and Analysis of Partial Discharge along Power Cables // Energies. 2021. Vol. 14. pp. 7692.
61. Song Y., Chen W., Wan F., Zhang Z., et al. Online multi-parameter sensing and condition assessment technology for power cables: A review // Electric Power Systems Research. 2022. Vol. 210. pp. 108140.
62. Szczegielniak T., Kusiak D., Jabłoński P. Thermal Analysis of the Medium Voltage Cable // Energies. 2021. Vol. 14. pp. 4164.
63. Balakrishnan G.K., Yaw C.T., Koh S.P., et al. A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations // Energies. 2022. Vol. 15, N 16. pp. 6000.
64. Shams F., Omar M., Usman M., et al. Thermal Imaging of Utility Power Lines: A Review. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET); 27–28 October 2022; Kuala Lumpur, Malaysia; 2022. pp. 1–4.
65. Mo S., Zhang D., Li Z., et al. The Possibility of Fault Location in Cross-Bonded Cables by Broadband Impedance Spectroscopy // IEEE Trans. Dielectr. Electr. Insul. 2021. Vol. 28. pp. 1416–1423.
66. Ciaburro G., Iannace G. Machine-Learning-Based Methods for Acoustic Emission Testing: A Review // Appl. Sci. 2022. Vol. 12, N 20. pp. 10476.
67. Witos F., Olszewska A., Opilski Z., et al. Application of Acoustic Emission and Thermal Imaging to Test Oil Power Transformers // Energies. 2020. Vol. 13. pp. 5955.
68. Werelius P., Tharning P., Eriksson R., et al. Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables // IEEE Trans. Dielectr. Electr. Insul. 2001. Vol. 8. pp. 27–42.
69. Nadolny Z. Electric Field Distribution and Dielectric Losses in XLPE Insulation and Semiconductor Screens of High-Voltage Cables // Energies. 2022. Vol. 15, N 13. pp. 4692.
70. Sikorski W., Walczak K., Gil W., et al. On-Line Partial Discharge Monitoring System for Power Transformers Based on the Simultaneous Detection of High Frequency Ultra-High Frequency and Acoustic Emission Signals // Energies. 2020. Vol. 13. pp. 3271.
71. Rybarz J., Borucki S., Kunicki M., et al. Influence of the Cable Accessories Installing Method on the Partial Discharge Activity in Medium Voltage Cables // Energies. 2022. Vol. 15. pp. 4216.
72. Rosle N., Muhamad N. A., Rohani M. N. K. H., et al. Partial Discharges Classification Methods in XLPE Cable: A Review // IEEE Access. 2021. Vol. 9, pp. 133258-133273. doi: 10.1109/ACCESS.2021.3115519.
73. Li Y., Jiang L., Xie M., et al. Advancements and Challenges in Power Cable Laying // Energies 2024. Vol. 17, N 12. pp. 2905.
74. Maraaba L., Al-Soufi K., Ssennoga T., et al. Contamination Level Monitoring Techniques for High-Voltage Insulators: A Review // Energies. 2022. Vol. 15. 7656.
75. Иванов Д.А. Особенности мониторинга сверхбольших частичных разрядов в высоковольтных. // Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2022. Т. 24. № 1. C.151-163. https://doi.org/10.30724/1998-9903-2022-24-1-151-163
76. Hoduń P., Borecki M. Reliability Assessment of MV Power Connections // Energies. 2021. Vol. 14. 6965.
77. Barbieri L., Villa A., Malgesini R., et al. An Innovative Sensor for Cable Joint Monitoring and Partial Discharge Localization // Energies. 2021. Vol 14, N 14. pp. 4095.
78. Albarracin R., Rodriguez-Serna J.M., Masud A.A. Finite-element-analysis models for numerical simulation of partial discharges in spherical cavities within solid dielectrics: A review and a novel method // High Volt. 2020. Vol. 5. pp. 556–568.
79. Rahman M.A., Saha A., Ghassemi M. Optimized Fabrication Process and PD Characteristics of MVDC Multilayer Insulation Cable Systems for Next Generation Wide-Body All-Electric Aircraft // Energies. 2024. Vol. 17, N 12. pp. 3040.
80. Choudhary M., Shafiq M., Kiitam I., et al. Investigation of partial discharge characteristics in XLPE cable insulation under increasing electrical stress // Engineering Failure Analysis. 2024. Vol. 158. pp. 108006. https://doi.org/10.1016/j.engfailanal.2024.108006
81. Mcallister I.W. Electric field theory and the fallacy of void capacitance // IEEE Trans. Electr. Insul. 1991. Vol. 26. pp. 458–459.
82. Crichton G.C., Karlsson P.W., Pedersen A. Partial discharges in ellipsoidal and spheroidal voids // IEEE Trans. Electr. Insul. 1989. Vol. 24. pp. 335–342.
83. Mami M.S., Köksal M. Remark on the lumped parameter modeling of transmission lines // Electr. Mach. Power Syst. 2000. Vol. 28. pp. 565–575.
84. Suyaroj N., Premrudeepreechacharn S., Watson N.R. Transient state estimation with the Bergeron transmission line model // Turk. J. Electr. Eng. Comput. Sci. 2017. Vol. 25. pp. 806–819.
85. Abdullah H., Uwe S. A full frequency-dependent cable model for the calculation of fast transients // Energies. 2017. Vol. 10. pp. 1158.
86. Wagenaars P., Wouters P., van der Wielen P.C.J.M., et al. Measurement of transmission line parameters of three-core power cables with common earth screen // IET Sci. Meas. Technol. 2010. Vol. 4. pp. 146–155.
87. Du Z., Willett P.K., Mashikian M.S. Performance limits of PD location based on time-domain reflectometry // IEEE Trans. Dielectr. Electr. Insul. 1997. Vol. 4. 182–188.
88. Robles G., Shafiq M., Martínez-Tarifa J.M. Multiple Partial Discharge Source Localization in Power Cables through Power Spectral Separation and Time-Domain Reflectometry // IEEE Trans. Instrum. Meas. 2019. Vol. 68. pp. 4703–4711.
89. Snell J., Renowden J. Improving results of thermographic inspections of electrical transmission and distribution lines. 2000 IEEE ESMO—2000 IEEE 9th International Conference on Transmission and Distribution Construction Operation and Live-Line Maintenance Proceedings. ESMO 2000 Proceedings. Global ESMO 2000; 8–12 October 2000; The Pow, Montreal, QC, Canada. 2000 IEEE: Piscataway, NJ, USA; 2000. pp. 135–144.
90. Ohki Y., Yamada T., Hirai N. Diagnosis of cable aging by broadband impedance spectroscopy. 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena; 16–19 October 2011; Cancun, Mexico; 2011. pp. 24–27.
91. Zhou Z., Zhang D., He J., et al. Local degradation diagnosis for cable insulation based on broadband impedance spectroscopy // IEEE Trans. Dielectr. Electr. Insul. 2015. Vol. 22. pp. 2097–2107.
92. Avellan A., Werelius P., Eriksson R. Frequency domain response of medium voltage XLPE cable terminations and its influence on cable diagnostics. Conference Record of the 2000 IEEE International Symposium on Electrical Insulation (Cat. No.00CH37075); 5 April 2000; Anaheim, CA, USA; 2000. pp. 105–108.
93. Yong H., Minyou C., Jinqian Z. High impedance fault identification method of the distribution network based on discrete wavelet transformation. 2011 International Conference on Electrical and Control Engineering; 16–18 September 2011; Yichang, China; 2011. pp. 2262–2265.
94. Li W., Liu Y., Li Y., et al. Series Arc Fault Diagnosis and Line Selection Method Based on Recurrent Neural Network // IEEE Access. 2020. Vol. 8. pp. 177815–177822.
95. Ding S., Zhang P., Ding E., et al. On the application of PCA technique to fault diagnosis // Tsinghua Sci. Technol. 2010. Vol. 15. pp. 138–144.
96. Chen H., Jiang B., Lu N., et al. Deep PCA Based Real-Time Incipient Fault Detection and Diagnosis Methodology for Electrical Drive in High-Speed Trains // IEEE Trans. Veh. Technol. 2018. Vol. 67. pp. 4819–4830.
97. Zhao H., Zheng J., Xu J., et al. Fault Diagnosis Method Based on Principal Component Analysis and Broad Learning System // IEEE Access. 2019. Vol. 7. pp. 99263–99272.
98. Zolfaghari M., Chabanlo R.M., Abedi M., et al. A Robust Distance Protection Approach for Bulk AC Power System Considering the Effects of HVDC Interfaced Offshore Wind Units // IEEE Syst. J. 2018. Vol. 12. pp. 3786–3795.
99. Nengling T., Chen C. A New Weak Fault Component Reactance Distance Relay Based on Voltage Amplitude Comparison // IEEE Trans. Power Deliv. 2008. Vol. 23. pp. 87–93.
100. Liang Y., Li W., Lu Z., et al. A New Distance Protection Scheme Based on Improved Virtual Measured Voltage // IEEE Trans. Power Deliv. 2020. Vol. 35. pp. 774–786.
101. Hu Y., Novosel D., Saha M.M., et al. An adaptive scheme for parallel-line distance protection // IEEE Trans. Power Deliv. 2022. Vol. 17. pp. 105–110.
102. Wang Y., Wang Y., Ma N., et al. Waveform-Similarity-Based Protection Scheme for AC Transmission Lines of MMC-HVDC System with Offshore Wind Farms // Energies. 2022. Vol. 15. pp. 9107.
103. Wang Q., Ma J., Shang L., et al. Analysis of the Effects of Grid-Connected Charging/Discharging Stations on Relay Protection // Energies. 2022. Vol. 15. pp. 9065.
104. Bakkar M., Bogarra S., Córcoles F., et al. Artificial Intelligence-Based Protection for Smart Grids // Energies. 2022. Vol. 15. pp. 4933.
105. Milosevic B., Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement. 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491); 13–17 July 2003; Toronto, ON, Canada; 2003. pp. 69–75.
106. Xu J., Wen M.H.F., Li V.O.K., et al. Optimal PMU placement for wide-area monitoring using chemical reaction optimization. 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT); 24–27 February 2013; Washington, DC, USA; 2013. pp. 1–6.
107. Reddy K.S.K., Rao D.A.K., Kumarraja A., et al. Implementation of Integer Linear Programming and Exhaustive Search algorithms for optimal PMU placement under various conditions. 2015 IEEE Power Communication and Information Technology Conference (PCITC); 15–17 October 2015; Bhubaneswar, India; 2015. pp. 850–855.
108. Huang L., Sun Y., Xu J., et al. Optimal PMU Placement Considering Controlled Islanding of Power System // IEEE Trans. Power Syst. 2014. Vol. 29. pp. 742–755.
109. Chatterjee S., Saha Roy B.K., Ghosh P.K. Optimal Placement of PMU Considering Practical Costs in Wide Area Network. 2017 14th IEEE India Council International Conference (INDICON); 15–17 December 2017; Roorkee, India; 2017. pp. 1–6.
110. Manousakis N.M., Korres G.N. Optimal Allocation of Phasor Measurement Units Considering Various Contingencies and Measurement Redundancy // IEEE Trans. Instrum. Meas. 2020. Vol. 69. 3403–3411.
111. Zhu X., Wen M.H.F., Li V.O.K., et al. Optimal PMU-Communication Link Placement for Smart Grid Wide-Area Measurement Systems // IEEE Trans. Smart Grid. 2019. Vol. 10. pp. 4446–4456.
112. Wojtowicz R., Kowalik R., Rasolomampionona D.D. Next Generation of Power System Protection Automation—Virtualization of Protection Systems. // IEEE Trans. Power Deliv. 2018. Vol. 33. 2002–2010.
113. Kumar S., Abu-Siada A., Das N., et al. Reverse Blocking Over Current Busbar Protection Scheme Based on IEC 61850 Architecture // IEEE Trans. Ind. Appl. 2023. Vol. 59. pp. 2225–2233.
114. Ma J., Ma W., Yan X., et al. A New Adaptive Backup Protection Scheme Based on Intelligent Electronic Devices // Can. J. Electr. Comput. Eng. 2015. Vol. 38. pp. 77–88.
115. Ma J., Ma W., Yan X., et al. A New Adaptive Voltage Protection Scheme for Distribution Network with Distributed Generations // Can. J. Electr. Comput. Eng. 2013. Vol. 36. pp. 142–151.
116. Barra P.H.A., Coury D.V., Fernandes R.A.S. A survey on adaptive protection of microgrids and distribution systems with distributed generators // Renew. Sustain. Energy Rev. 2020. Vol. 118. pp. 109524.
117. Laouamer M., Kouzou A., Mohammedi R.D., et al. Optimal PMU Placement in Power Grid Using Sine Cosine Algorithm. 2018 International Conference on Applied Smart Systems (ICASS); 24–25 November 2018; Medea, Algeria; 2018. pp. 1–5.
118. Sampaio F.C., Tofoli F.L., Melo L.S., et al. Smart Protection System for Microgrids with Grid-Connected and Islanded Capabilities Based on an Adaptive Algorithm // Energies. 2023. Vol. 16. pp. 2273.
119. Iamandi A., Arghira N., Constantin I.C., et al. The Influence of Digital Communications in Protection Schemes. 2019 22nd International Conference on Control Systems and Computer Science (CSCS); 28–30 May 2019; Bucharest, Romania; 2019. pp. 363–368.
120. Sheng S., Chan W.L., Li K.K., et al. Context Information-Based Cyber Security Defense of Protection System // IEEE Trans. Power Deliv. 2007. Vol. 22. pp. 1477–1481.
121. Queiroz A.R.S., Senger E.C., de Oliveira M.F., et al. Reducing Arc Flash Incident Energy Level in an Offshore Gas Production Unit Using Intelligent Electronic Devices—A Case Study // IEEE Trans. Ind. Appl. 2015. Vol. 51. pp. 129–133.
122. Bindi M., Corti F., Aizenberg I., et al. Machine Learning-Based Monitoring of DC-DC Converters in Photovoltaic Applications // Algorithm. 2022. Vol. 15. pp. 74.
123. Wang L., Zhao Q., Liang D. Fault Diagnosis of UHVDC Transmission Line Based on Deep Neural Network. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia); 8–11 July 2022; Shanghai, China; 2022. pp. 445–450.
124. Hayder A.N., Saidi L. Applications of Artificial Neural Networks with Input and Output Degradation Data for Renewable Energy Systems Fault Prognosis. 2021 12th International Renewable Energy Congress (IREC); 26–28 October 2021; Hammamet, Tunisia; 2021. pp. 1–6.
125. Bortoni E.C., Santos L., Bastos G.S. A Model to Extract Wind Influence from Outdoor IR Thermal Inspections // IEEE Trans. Power Deliv. 2013. Vol. 28. pp. 1969–1970.
126. Wanderley Neto E.T., Da Costa E.G., Maia M.J.A. Influence of Emissivity and Distance in High Voltage Equipments Thermal Imaging. 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America; 15–18 August 2006; Caracas, Venezuela; 2006. pp. 1–4.
127. Comte C., Lacasse R. Applicability of resistance and temperature measurements for the characterization of full tension compression splices. 2003 IEEE 10th International Conference on Transmission and Distribution Construction Operation and Live-Line Maintenance 2003. 2003 IEEE ESMO; 6–10 April 2003; Orlando, FL, USA; 2003. pp. 95–102.
128. de Paulis F., Olivieri C., Orlandi A., et al. Exploring Remote Monitoring of Degraded Compression and Bolted Joints in HV Power Transmission Lines // IEEE Trans. Power Deliv. 2016. Vol. 31. pp. 2179–2187.
129. Belardi R., Bindi M., Grasso F., et al. A complex Neural Classifier for the Fault Prognosis and Diagnosis of Overhead Electrical Lines. IOP Conference Series: Earth and Environmental Science 2020 International Conference on Advanced Electrical and Energy Systems; 18–21 August 2020; Osaka Japan. IOP Publishing Ltd.: Bristol UK; 2020. Volume 582.
130. Bindi M., Aizenberg I., Belardi R., et al. Neural Network-Based Fault Diagnosis of Joints in High Voltage Electrical Lines // Adv. Sci. Technol. Eng. Syst. J. 2020. Vol. 5. pp. 488–498. [Google Scholar] [CrossRef]
131. Aizenberg I. Complex-Valued Neural Networks with Multi-Valued Neurons. Springer: Berlin/Heidelberg, Germany; 2011.
132. Fontana G., Luchetta A., Manetti S., et al. An unconditionally sound algorithm for testability analysis in linear time invariant electrical networks // Int. J. Circuit Theory Appl. 2016. Vol. 44. pp. 1308–1340.
133. Aizenberg I., Bindi M., Grasso F., et al. Testability Analysis in Neural Network Based Fault Diagnosis of DC-DC Converter. 2019 IEEE 5th International Forum on Research and Technology for Society and Industry (RTSI); 9–12 September 2019; Florence, Italy; 2019. pp. 265–268.
134. Sturchio A., Fioriti G., Pompili M., et al. Failure rates reduction in SmartGrid MV underground distribution cables: Influence of temperature. 2014 AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT); 18–19 September 2014; Trieste, Italy; 2014. pp. 1–6.
135. Sturchio A., Fioriti G., Salusest V., et al. Thermal behavior of distribution MV underground cables. 2015 AEIT International Annual Conference (AEIT); 14–16 October 2015; Naples, Italy; 2015. pp. 1–5.
136. Aizenberg I., Belardi R., Bindi M., et al. Failure Prevention and Malfunction Localization in Underground Medium Voltage Cables // Energies. 2021. Vol. 14. pp. 85.
137. Conte G. Manuale di Impianti Elettrici. HOEPLI: Milan Italy; 2009.
138. Aras F., Alekperov V., Can N., Kirkici H. Aging of 154 kV underground power cable insulation under combined thermal and electrical stresses // IEEE Electr. Insul. Mag. 2007. Vol. 23, N 5. pp. 25–33.
139. Bindi M., Grasso F., Luchetta A., et al. A New Application of Power Line Communication Technologies: Prognosis of Failure in Underground Cables. 2022 International Conference on Electrical Computer Communications and Mechatronics Engineering (ICECCME); 16–18 November 2022; Maldives, Maldives; 2022. pp. 1–6.
140. Cataliotti A., Daidone A., Tine G. A Medium-Voltage Cables Model for Power-Line Communication // IEEE Trans. Power Deliv. 2009. Vol. 24. pp. 129–135.
141. Meng J., Yue M., Diallo D. Nonlinear extension of battery constrained predictive charging control with transmission of Jacobian matrix // Int. J. Electr. Power Energy Syst. 2023. Vol. 146. pp. 108762.
142. Lare P., Sarabi S., Delpha C., et al. Stator winding Inter-turn short-circuit and air gap eccentricity fault detection of a Permanent Magnet-Assisted Synchronous Reluctance Motor in Electrified vehicle. 2021 24th International Conference on Electrical Machines and Systems (ICEMS); 31 October–3 November 2021; Gyeongju, Republic of Korea; 2021. pp. 932–937.
143. Mousavi Gargari S., Wouters P.A.A.F., van der Wielen P.C.J.M., et al. Partial discharge parameters to evaluate the insulation condition of on-line located defects in medium voltage cable networks // EEE Trans. Dielectr. Electr. Insul. 2011. Vol. 18. pp. 868–877.
144. So C.W., Li K.K., Lai K.T., et al. Application of genetic algorithm for overcurrent relay coordination. Sixth International Conference on Developments in Power System Protection (Conf. Publ. No. 434); 25–27 March 1997; Nottingham, UK; 1997. pp. 66–69.
145. Bedekar P.P., Bhide S.R. Optimum Coordination of Directional Overcurrent Relays Using the Hybrid GA-NLP Approach // IEEE Trans. Power Deliv. 2011. Vol. 26. 109–119.
146. Amraee T. Coordination of Directional Overcurrent Relays Using Seeker Algorithm // IEEE Trans. Power Deliv. 2012. Vol. 27. pp. 1415–1422.
147. Moirangthem J., Krishnanand K.R., Dash S.S., et al. Adaptive differential evolution algorithm for solving non-linear coordination problem of directional overcurrent relays // IET Gener. Transm. Distrib. 2013. Vol. 7. pp. 329–336.
148. Lee C.-H., Chen C.-R. Using Genetic Algorithm for Overcurrent Relay Coordination in Industrial Power System. 2007 International Conference on Intelligent Systems Applications to Power Systems; 5–8 November 2007; Kaohsiung, Taiwan; 2007. pp. 1–5.
149. Purwar E., Vishwakarma D.N., Singh S.P. A Novel Constraints Reduction-Based Optimal Relay Coordination Method Considering Variable Operational Status of Distribution System with DGs // IEEE Trans. Smart Grid. 2019. Vol. 10. pp. 889–898.
150. Yang H.T., Chang W.Y., Huang C.L. A new neural networks approach to on-line fault section estimation using information of protective relays and circuit breakers // IEEE Trans. Power Deliv. 1994. Vol. 9. pp. 220–230.
151. Osman A.H., Abdelazim T., Malik O.P. Transmission line distance relaying using on-line trained neural networks // IEEE Trans. Power Deliv. 2005. Vol. 20. pp. 1257–1264.
152. Cardoso G., Rolim J.G., Zurn H.H. Application of neural-network modules to electric power system fault section estimation // IEEE Trans. Power Deliv. 2004. Vol. 19. pp. 1034–1041.
153. Kiaei I., Lotfifard S. Fault Section Identification in Smart Distribution Systems Using Multi-Source Data Based on Fuzzy Petri Nets // IEEE Trans. Smart Grid. 2020. Vol. 11. pp. 74–83.
154. Jamali S., Bahmanyar A., Borhani-Bahabadi H. A fast and accurate fault location method for distribution networks with dg using genetic algorithms. 2015 Smart Grid Conference (SGC); 22–23 December 2015; Tehran, Iran; 2015. pp. 110–114.
155. Bedekar P.P., Bhide S.R., Kale V.S. Fault section estimation in power system using neurogenetic approach. 2009 International Conference on Power Systems; 27–29 December 2009; Kharagpur, India; 2009. pp. 1–6.
156. Ahmed A.S., Attia M.A., Hamed N.M., et al. Comparison between genetic algorithm and whale optimization algorithm in fault location estimation in power systems. 2017 Nineteenth International Middle East Power Systems Conference (MEPCON); 19–21 December 2017; Cairo, Egypt; 2017. pp. 631–637.
157. Sanaye-Pasand M., Malik O.P., Chen Z., et al. Discussion of “Artificial neural network approach to single-ended fault locator for transmission lines” // IEEE Trans. Power Syst. 2001. Vol. 16. 949–950.
158. Lan S., Chen M.-J., Chen D.-Y. A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network // IEEE Trans. Power Deliv. 2019. Vol. 34. pp. 848–857.
159. Osman A.H., Abdelazim T., Malik O.P. Genetic algorithm approach for adaptive data window distance relaying. 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491); 13–17 July 2003; Toronto, ON, Canada; 2003. Vol. 3. pp. 1862–1867.
160. Gupta M., Srivastava S., Gupta J.R.P. Power System Frequency Estimation Using Neural Network and Genetic Algorithm. 2008 Joint International Conference on Power System Technology and IEEE Power India Conference; 12–15 October 2008; New Delhi, India; 2008. pp. 1–5.
161. Abdelaziz A.Y., Aleem S.H.E.A., Yadav A. Artificial Intelligence Applications in Electrical Transmission and Distribution Systems Protection. 1st ed. CRC Press: Boca Raton, FL, USA; 2022.
Рецензия
Для цитирования:
Гатауллин А.М., Гавриленко А.Н., Писковацкий Ю.В. Обзор современных методов защиты и диагностики состояния интеллектуальных систем электроснабжения. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2025;27(4):3-29. https://doi.org/10.30724/1998-9903-2025-27-4-3-29
For citation:
Gataullin A.M., Gavrilenko A.N., Piscovatskiy Y.V. Review of modern protection and diagnostics methods of intelligent power supply systems. Power engineering: research, equipment, technology. 2025;27(4):3-29. (In Russ.) https://doi.org/10.30724/1998-9903-2025-27-4-3-29