Preview

Power engineering: research, equipment, technology

Advanced search

Automatic device for measuring of principal thermoelectric parameters of lead chalcogenides

https://doi.org/10.30724/1998-9903-2017-19-7-8-126-132

Abstract

The device intended for measuring of principal thermoelectric parameters of the narrow-gap lead chalcogenide semiconductors (the Seebeck coefficient, electrical conductivity and thermal conductivity) have been created. The device created can be controlled by personal computer. In the temperature range from 270K to 500K the  correctness of values of the thermoelectric parameters measured by the device are following: thermal conductivity – ±5,7%; electrical conductivity – ±3,5%; the Seebeck coefficient – ±4%.

 

 

About the Authors

A. M. Sinicin
Kazan State Power Engineering University, Kazan
Russian Federation
assistant, Industrial electronics and light engineering department


V. A. Ulanov
Kazan State Power Engineering University, Kazan
Russian Federation
associate professor, doctor of physical-mathematical sciences, Industrial electronics and light engineering department


References

1. P. Shostakovskii. Thermoelectric sources of alternative power supply // Komponenty i tekhnologii, no.126, p.131-138 (2010).

2. Z. H. Dughaish. Lead telluride as a thermoelectric material for thermoelectric power generation //Physica B, v.322, p.205-223 (2002).

3. Yan-Ling Pei, Yong Liu. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. // Journal of Alloys and Compounds, v.514, p.40-44 (2012).

4. L.-D. Zhao, Shin-Han Lo, Y. Zhang, Hui Sun, G. Tan, Ctirad Uher, C. Wolverton, M.G. Kanatzidis. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. // Nature, v.508, p.373-377 (2014).

5. J.Martin, T.Tritt, C.Uher. High temperature Seebeck coefficient metrology // J. Appl. Phys., v.108, p.121101 (2010).

6. J. de Boor, E. Muller. Data analysis for Seebeck coefficient measurements // Review of scientific instruments, v.84, p.065102-1-9 (2013)

7. Sh. Iwanaga, G. J. Snyder. Scanning Seebeck coefficient measurement system for homogeneity characterization of bulk and thin-film thermoelectric materials // Journal of Electronic Materials, v.41, p.1667-1674 (2012)

8. V.А. Osipova. Experimental investigation of processes of the thermal transport. М.: Energia, 1973. 318 p.

9. A.Franco. An apparatus for routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method // Applied Thermal Engeneering, v.27, p.2495-2504 (2007).

10. M. Gustavsson, E. Karawacki, S. E. Gustafsson. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors // Rev. Sci. Instrum., v.65, p.3856-3859 (1994).

11. L.P. Pavlov. Methods of measuring of parameters of semiconducting materials. Ucheb. dlja VUZov, 2-е izd., pererab. i dop. М.: Vyssh. shk, 1987. 239 p.

12. А.М. Sinicin, V.А. Ulanov. The measuring chamber of the device controlling the basic characteristics of the materials used in thermoelectric generators // Problemy energetiki. 2016. №5-6, P.110–115.


Review

For citations:


Sinicin A.M., Ulanov V.A. Automatic device for measuring of principal thermoelectric parameters of lead chalcogenides. Power engineering: research, equipment, technology. 2017;19(7-8):126-132. (In Russ.) https://doi.org/10.30724/1998-9903-2017-19-7-8-126-132

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)