THE SUMMARIZED FORMULA FOR VELOCITY OF TURBULENT AND LAMINAR FLOWS IN PIPES
https://doi.org/10.30724/1998-9903-2018-20-7-8-136-146
Abstract
On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.
Keywords
About the Authors
L. E. MelamedRussian Federation
Lev Emmanuilovich Melamed – Dr. Sci. (Techn.), chief scientist of closed joint-stock company “Intelligence”, 117246 Moscow
G. A. Filippov
Russian Federation
Gennady Alekseevich Filippov – Dr. Sci. (Techn.), professor, member of Russian Academy of Sciences, Department of power, mechanical engineering, mechanics and control processes, 119991 Moscow
References
1. Zagarola M.V., Smits A.J. Mean-flow scaling of turbulent pipe flow // J. Fluid Mech. 1998. V. 373, pp. 33‒79.
2. McKeon B.J., Li J., Jiang W, Morrison J.F., Smits A.J. Further observations on the mean velocity distribution in fully developed pipe flow // J. Fluid Mech. 2004. V. 501, pp. 135‒147.
3. George W.K. Is there a universal log law for turbulent wall-bounded flows? // Phil. Trans. R. Soc. A. 2007. V. 365, pp. 789‒806.
4. Barenblatt G.I., Korin A.Dzh., Prostokishin V.M. Turbulentnyye techeniya pri ochen’ bol’shikh chislakh Reynol’dsa: uroki novykh issledovaniy. // Uspekhi fizicheskikh nauk. 2014. T. 184. № 3. Pp. 265‒272. https://ufn.ru/ru/articles/2014/3/e/
5. Vigdorovich I.I. Opisyvayet li stepennaya formula turbulentnyy profil’ skorosti v trube? // Uspekhi fizicheskikh nauk. 2015. Tom 185. № 2. Pp. 213‒216. https://ufn.ru/ru/articles/2015/2/
6. Barenblatt G.I., Korin A.Dzh., Prostokishin V.M. K probleme turbulentnykh techeniy v trubakh pri ochen’ bol’shikh chislakh Reynol’dsa // Uspekhi fizicheskikh nauk. 2015. T. 185. № 2. Pp. 217‒220. https://ufn.ru/ru/articles/2015/2/
7. Zavolzhenskiy M.V., Rutkevich P.B. Razvitaya turbulentnost’ v trubakh. M.: IKI RAN. 2007. № 2140. 38 p.
8. Melamed L.E. Uravneniye turbulentnogo dvizheniya v trubakh // Pis’ma v ZHurnal tekhnicheskoy fiziki. 2015. T. 41. Vyp. 24. Pp. 23‒28. http://journals.ioffe.ru/articles/viewpdf/42592
9. Reichardt H. Vollstadige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen // Z. Angew. Math. Mech. 1951. Db. 31. No. 7. Pp. 208‒219.
10. Melamed L.E., Filippov G.A. Modelirovaniye turbulentnosti kak «vikhrevoy zasypki» // Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. 2017. T. 19. № 9‒10. Pp . 122‒132.
11. Melamed L.E. Metod lokal’nykh fluktuatsiy i modelirovaniye neodnorodnykh sred // Pis’ma v ZHurnal tekhnicheskoy fiziki. 2016. T. 42. Vyp. 19. C. 31‒37. http://journals.ioffe.ru/articles/viewpdf/43761
12. Gol’dshtik M.A. Protsessy perenosa v zernistom sloye. Novosibirsk. 2005. 358 p.
Review
For citations:
Melamed L.E., Filippov G.A. THE SUMMARIZED FORMULA FOR VELOCITY OF TURBULENT AND LAMINAR FLOWS IN PIPES. Power engineering: research, equipment, technology. 2018;20(7-8):136-146. (In Russ.) https://doi.org/10.30724/1998-9903-2018-20-7-8-136-146