Preview

Power engineering: research, equipment, technology

Advanced search
Vol 23, No 2 (2021)
View or download the full issue PDF (Russian)

POWER ENGINEERING

3-13 624
Abstract

PURPOSE. To analyze the prospects of integrating hydrogen technologies into the traditional directions of development of the electric power industry in the world and Russia. To highlight the competitive advantages of Russia in the changing structure of the industry with the transition to" green " hydrogen. METHODS. The analysis of the literature data and the data of the international information exchange is carried out. RESULTS. The most urgent scientific and technical problem of the economy, affecting any practical aspect of human economic activity, is the issue of the availability of energy resources and the impact on the environment. It is now, in the context of the restrictions caused by the COVID-19 pandemic, that the trends of globalization are particularly acute, and the degree of cross-border information communication using digital capabilities has increased many times. CONCLUSION. The transition to a new technological stage of energy supply for our society is more urgent than ever, based on innovative approaches to the creation of intelligently managed global energy systems with their consolidation and, at the same time, decentralization and distribution to local levels of centers, production, consumption and management, increasing the share of small RES, the introduction of new digital solutions, the use of hydrogen technology chains and hybrid systems based on them and other promising energy technologies on an industrial scale.

14-26 553
Abstract

THE PURPOSE. This study focused on the probability of construction of dual – purpose nuclear-hydrogen unit for cogeneration of hydrogen and electricity with nuclear power reactor VVER-1200 based on AES-2006 project. METHODS. The aim of the study is the probation of the IAEA calculation method originated for sea water desalination unit using nuclear power plant as an energy source, but with a view to same time production of high-quality hydrogen and electricity concerning the ecological issues of hydrogen generation. In particular, the method was used for probabilistic assessment of single-purpose NPP unit and dual-purpose nuclear-hydrogen unit. The supposed result of the study was construction of special building for the electrolytic process purposes. The ground location of the building was out of the main building area. The special building should consist of electrolytic units, technological water feed and removal pipelines, tanks for hydrogen and other service equipment. RESULTS. The paper introduced the theoretical possibility of hydrogen production on the rate up to 1,927∙108 m3/year in the case of full-time basis operation of 50 hydrogen units. The rate of produced hydrogen corresponds to 18,53% of inner Russian market hydrogen needs. In this case the electricity cost factor was 0,097 $/kW∙hr, the cost factor of higher quality hydrogen was 0,956 $/m3. The paper introduced the prime cost comparison of produced hydrogen according to hydrogen units total capacity and arrangement demands. CONCLUSION. This method has the limits of applicability, but in our case, it can be used to calculate key economic factors of the project and to analyze the validation of the energy source and the hydrogen unit size.

27-35 6463
Abstract

THE PURPOSE. Comprehensive study of the effect of direct current electric discharge plasma in a gas-liquid medium of inorganic mixtures in order to obtain gaseous hydrogen. Obtain volt-ampere, volt-second and ampere-second characteristics of the discharge at various concentrations of electrolyte. Study the process of electrolysis, breakdown, discharge ignition and discharge flow in a dielectric tube at a constant current. METHODS. To solve this problem, experimental studies were carried out on a model installation, which consists of a power supply system, a discharge chamber, equipment for monitoring and controlling the operation of the installation and measuring the characteristics of an electric discharge. To analyze the stability of the discharge, the time dependences of the voltage ripple and the discharge current were obtained. RESULTS. Experimental studies were carried out between the electrolytic cathode and the electrolytic anode at constant current and at atmospheric pressure with the following parameters: discharge voltage U = 0.1-1.5 kV, discharge current I = 0.02-2.3 A, interelectrode distance l = 100 mm , 1%, 3% and 5% solutions of sodium chloride in tap water were used as electrolytes. CONCLUSION. It is shown that electrical breakdown and ignition of a discharge that is stable in time depends on the conductivity of the gas-liquid medium of the electrolyte. The nature of the current-voltage characteristics depends on the random processes occurring in the gas-liquid medium, which is associated with numerous breakdowns occurring in the gas-liquid medium of the electrolyte, combustion and attenuation of microdischarges, the appearance of bubbles, and the movement of the electrolyte inside the dielectric tube. It is shown that the generation of hydrogen and hydrogen-containing components can occur both at the stage of electrolysis and during discharge combustion. A feature of this method is that electrical discharges in the tube increase the release of hydrogen. In this installation, inorganic and organic liquids of a certain composition and concentration can be used. The results of experimental studies made it possible to develop and create a small-sized installation for producing gaseous hydrogen. Tests have shown that a small-sized plant can be taken as the basis for a industrial plant for the production of hydrogen gas.

36-45 766
Abstract

THE PURPOSE. To consider the features of the socio-economic development of Russia in the context of the fourth energy transition, which is based on the use of renewable energy sources and hydrogen as an energy carrier. To carry out a comparative analysis of approaches to the development and implementation of hydrogen energy programs in developed countries and in Russia. METHODOLOGY. To solve this problem, the method of analyzing the regulatory framework, monographic, scientific and analytical literature, program documents of various levels, real steps of the authorities in the implementation of the fourth energy transition was used. DISCUSSIONS. The current economic model of energy production and consumption is based on an increase in entropy, which leads to irreversible changes in the global ecosystem. The fourth energy transition involves the delocalization of energy production and the use of dissipated energy, which leads to a decrease in entropy. The transition to the use of renewable energy sources carries economic risks associated with the loss of established markets for traditional energy sources, a reduction in the production of products and services for the oil and gas sector of the economy, as well as the introduction of a "carbon tax" on the export products of Russian companies. Russia has achieved certain results in the development of hydrogen energy technologies, which can lead to access to international markets for hydrogen and technologies for its production. It is necessary to work with the public to explain the benefits of green energy. It is important to coordinate the actions of the Government of the Russian Federation and business to reduce costs during the transition to new energy. CONCLUSION. The authors have proposed measures that must be taken into account when implementing the Action Plan ("road map") for the development of hydrogen energy in the Russian Federation until 2024. 1. To supplement the roadmap with a system of measures to inform the population of the need to introduce green energy, including programs of additional, general secondary and higher education. 2. To change the structure of the Federal State Educational Standard of general secondary education in terms of including chemistry and biology in the list of compulsory subjects in order to provide personnel with hydrogen energy. 3. Determine the priority of projects on renewable energy sources and hydrogen energy in the formation of tender documentation by the development institutes of the Russian Federation. 4. Ensure real decarbonization of the country's energy sector to maintain the export positions of raw materials, food and industrial goods of Russian manufacturers.

46-55 652
Abstract

THE PURPOSE. To consider various variants of thermal schemes of power plants and to assess the main technical and economic parameters. The article presents the results of the development of schemes of electric power plants with a capacity of up to 100 kW with a steam-generating hydrogen-oxygen plant for modeling and selecting effective options for thermal schemes of microgeneration power plants at the stage of design and development of energy systems. METHODS. The analysis of the proposed variants of thermal schemes with a hydrogen-oxygen steam generator, including circuit solutions of micro-gas turbine installations with a hydrogen-oxygen steam generator, a scheme of a steam-gas installation with a hydrogen-oxygen steam generator and intermediate steam superheating, a scheme of a steam-turbine installation with a hydrogen-oxygen steam generator, a scheme of a steam-turbine installation with a hydrogen-oxygen steam generator and a single-stage intermediate steam superheating, is performed, the scheme of a steam turbine installation with a hydrogen-oxygen steam generator and an intermediate superheat of steam and a steam cooler. RESULTS. A variant of the thermal scheme is proposed, which will allow determining the approach to estimating the fuel component of the production cost of heat and electricity for domestic power plants. The article describes a chemical method for producing hydrogen under laboratory conditions in hydrogen generators based on the hydrolysis of a solid reagent-aluminum-in a reaction vessel, in which the contact of aluminum particles occurs in the liquid phase of an aqueous solution of caustic soda. A feature of the proposed method is the possibility of regulating the flow rates in the supply lines of an aqueous suspension of aluminum and an aqueous solution of caustic soda, which can significantly improve the quality of regulation and reduce the cost of operating such systems. To a large extent, the creation of such systems becomes possible if there is a demand for the generated electrical energy, which determines the need to ensure high values of technical and economic indicators of the operation of power plants. CONCLUSHION. Calculated estimates have shown that the specific consumption of conventional fuel for the production of electric energy by microgeneration systems based on gas turbine units with a hydrogen generator with a capacity of 5-100 kW ranges from 0.098 to 0.117 kg/kWh.

56-69 466
Abstract

THE PURPOSE. System efficiency and competitiveness assess of a new scheme for combining a nuclear power plant with a hydrogen complex based on additional heating of feed water and superheating of live steam in front of the high-pressure cylinder of a steam turbine. METHODS. Basic laws of thermodynamics were applied when developing and substantiating a new scheme for combining a nuclear power plants (NPP) with a hydrogen facility; theoretical regularities were applied of heat engineering; basic regularity were applied of fatigue wear of power equipment and assessment of its working resourse; basic regularities were applied for the assessment of operating costs and net present value (NPV). RESULTS. A new scheme is presented of the combination of a nuclear power plant with a hydrogen facility and a description of its operating principle on the example of a two-circuit nuclear power plant with a VVER-1000 reactor and a C-1000-60 / 1500 turbine. The data are presented on an increase in the productivity of steam generators at nuclear power plants with additional heating of feed water in the range of 235-250 ° C from its nominal value of 230 ° C. The temperature was estimated of live steam superheat depending on the temperature of the additional heating of the feed water. The results are presented of the calculation of the generated peak power by the power unit and the efficiency of conversion of the night off-peak power of the NPP into peak power, as well as the efficiency of the power unit of the NPP depending on the temperature of additional heating of the feed water. Main regularities are given for taking into account the fatigue wear of the main equipment of the hydrogen facility, including the rotor of the NPP turbine in the conditions of the stress-cyclic operation. The results are presented of assessing the cost of peak electricity NPP in combination with a hydrogen facility in comparison with a pumped storage power plant (PSPP) both for the current period and for the future until 2035. CONCLUSION. Hydrogen facility efficiency and competitiveness depends significantly on the intensity of the use of the main equipment in the conditions of the intense-cyclic operation. The hydrogen facility will competitiveness noticeably increase in comparison with the PSPP in the future. Efficiency of the NPP power unit and NPV is highest when the feed water is heated to 235 ° C and superheating of live steam in front of the high-pressure cylinder of the C-1000-60/1500 turbine up to 470°C.The hydrogen facility competes with the PSPP with her specific capital investment at the level of 660 USD / kW, provided that the boosting capabilities of the turbine are used with live steam overheating at 300 ° C and additional heating of feed water to 235°C on the current period. The PSPP does not compete with the hydrogen facility both for the current period and in the future with her specific capital investment of $ 1,500 / kW and above.

70-83 880
Abstract

THE PURPOSE. Consider the use of hydrogen technologies in energy. The total production of hydrogen in Russia is about 5 million tons with a global consumption of 72 million tons. However, in the case of toughening of carbon regulation by importers of Russian products, the production of hydrogen in the Russian Federation may double. The roadmap «Development of hydrogen energy in Russia» stipulates that Gazprom and Rosatom will become the first hydrogen producers in the country - in 2024 they should launch pilot hydrogen plants, including at nuclear power plants. METHODS. To realize the potential in the country and achieve the goals laid down in the Energy Strategy, the departments have prepared a special action plan (roadmap) for the development of hydrogen energy in Russia until 2024, which was approved by Russian government on October 12, 2020. The main goal of this plan is called the organization of priority work on the formation in Russia of a high-performance export-oriented hydrogen energy, developing on the basis of modern technologies and provided with highly qualified personnel. RESULTS. Transportation and safe storage remains one of the key issues in hydrogen energy. The complexity of this problem is determined by the fact that in the free state hydrogen is one of thelow-boiling gases, in liquid and solid state more than an order of magnitude lighter than water and an order of magnitude lighter than gasoline. The molecules of the substance are so small that they can seep through the atomic structure of a metal container at temperatures above minus 253 ° C. Maintaining such a temperature in a large volume for a long time is energy-intensive. Another problem is hydrogen embrittlement and destruction of metals by atomic hydrogen. Even high-strength steels, as well as titanium and nickel alloys, are susceptible to it. CONCLUSION. The demand for hydrogen is growing due to the shift to the consumption of cleaner and lighter fuel oils, while the petroleum feedstock is getting heavier. But at the same time, the potential of natural gas has not yet been exhausted, which already now contributes to the low-carbon development of the economy. Skepticism about hydrogen technologies will disappear only when one of them gains relatively widespread use. At the same time, there is no doubt that hydrogen is very relevant for the creation of chemical current generators. This is of great importance for transport, and for distributed energy, and for a number of other areas.

84-92 791
Abstract

THE PURPOSE. The study is aimed at studying the effect of fuel gases of various component composition on the environmental performance of the GE 6FA gas turbine unit. Consider using hydrogen as primary sweat to minimize emissions and improve performance of the GE 6FA gas turbine. METHODS. To achieve this goal, the ASGRET (Automated system for gas-dynamic calculations of power turbomachines) software package was used. RESULTS. The article discusses promising directions for the utilization of CO2 using highly efficient technologies with further use or disposal. A mathematical model of a GE 6FA gas turbine unit, diagrams of changes in the main characteristics and the composition of emissions when operating on various types of fuel, including hydrogen, are presented. CONCLUSION. The studies carried out show that a change in the component composition of the gas affects the energy characteristics of the engine. The method for determining the quantitative composition of COx, NOx, SOx in the exhaust gases of a gas turbine plant is presented. The transition to the reserve fuel kerosene leads to an increase in the amount of emissions, which must be taken into account when designing systems for capturing harmful emissions with a dual-fuel fuel gas supply system. The use of hydrogen as a fuel for gas turbines allows to reduce not only the cost of fuel preparation, but also to minimize emissions and improve the performance of the gas turbine plant.

93-103 534
Abstract

THE PURPOSE. To analyze the perspectives for the development of hydrogen energy in the Murmansk region. To consider the possibility of implementing projects for producing "green" hydrogen for industrial using. METHODS. The method of analysis of literature sources in the field of hydrogen energy was used, as well as the method of generalizing the information obtained. RESULTS. The article describes the relevance of the topic, studies the global trend towards the transition to "green" energy. The methods of producing hydrogen are considered. The most environmentally friendly and efficient method for the production of industrial hydrogen has been identified, and possible sources of its production have been considered. CONCLUSION. As a result of the analysis of the prospects for the development of hydrogen energy in the Murmansk region, the prerequisites for the production of "green" hydrogen on an industrial scale are revealed. Possible sources for its production are listed. The article provides an example of the implementation of a project to create an international scientific research station on the territory of the Murmansk region, where hydrogen fuel cells will be used.

104-115 589
Abstract

PURPOSE. Consider the electrochemical technologies used for the production of hydrogen at gas stations and the operation of hybrid electric vehicle engines on storage batteries with fuel cells. Comparative analysis of the production and use of energy by electrochemical and traditional methods in vehicles. METHODS. Based on the analysis of literature data and mathematical calculations. RESULTS. For a light electric vehicle, the calculation of the amount of electricity that can be obtained in a fuel cell by processing 1 kg of hydrogen was carried out. It has been shown that a hydrogen electric car can travel about 100 km for 1 kg of hydrogen. A comparison was made of the fuel costs for different types of automotive engines for the current market conditions in Russia and the EU countries. CONCLUSION. Hydrogen can become the environmentally friendly fuel of the future, reduce global dependence on fossil fuel resources and reduce carbon dioxide emissions from the transportation industry. Today, green technologies have made significant progress, modern vehicles of various classes on hydrogen fuel have been developed and sold around the world, and their price characteristics are already comparable to existing traditional technologies. The advantages of electrochemical technologies for the production and use of hydrogen in the road transport sector are sufficient to make hydrogen a serious energy candidate for modern transportation systems.

116-127 405
Abstract

PURPOSE. Testing of a hydrogen-oxygen steam generator (HOSG) of the kilowatt power class for the study of heat and mass transfer processes. METHODS. At the first stage, the technological system of diagnostics and control was considered, with the help of which preliminary tests were carried out. According to the results of which the structural elements of the HOSG were modernized. Further, at the second stage, an automated process control system was created, which ensured the conduct of multi-mode tests of the HOSG. RESULTS. The design of the HOSG showed its efficiency. The changes in the cooling water flow rate, pressure and temperature in the evaporation chamber during multi-mode tests are presented, as well as the generalized results of experimental studies, which show the dependence of the steam temperature on the mass fraction of water at different coefficients of the excess oxidizer.

CONCLUSION. During the preliminary tests, the development of upgraded components of the HOSG was carried out, ensuring an increase in the efficiency of its operation. The created automated control system made it possible to successfully conduct subsequent multi-mode tests with two different types of cameras. The indicators of unreacted hydrogen are comparable to those already achieved in existing devices. The characteristic transition times from mode to mode show compliance with the requirements for creating autonomous power plants based on renewable energy sources.

128-148 1392
Abstract

This publication provides a brief overview of the materials of developments in promising areas of hydrogen energy and hydrogen technologies carried out by scientists and specialists at the National Research Center "Kurchatov Institute", in particular: - plasma, plasma-chemical, beam technologies, hydrogen energy technologies to ensure environmental safety and environmental protection, including:

  • methods and technologies based on plasma-chemical processes for the processing and synthesis of organic compounds, modeling of plasma and plasma-chemical processes;
  • development of plasma-melt technologies for gasification of solid organic raw materials, • development of a plasmatron complex for waste processing;
  • elements of hydrogen (atomic-hydrogen) energy, including plasma ones, which ensure an increase in energy efficiency and environmental safety in energy (including renewable energy) in transport; • plasma catalytic systems for the conversion of organic fuels;
  • fuel cells and electrolytic cells with solid polymer electrolyte; • membrane and membrane catalytic systems for hydrogen production and purification;
  • nanostructured electrocatalysts;
  • ensuring hydrogen safety.

The Kurchatov Institute is the founder and undisputed leader and coordinator of research and development in our country in a number of key areas of hydrogen energy.

149-160 702
Abstract

To develop metal hydride reactors for storage and purification hydrogen of various types. Integrate metal hydride hydrogen storage and purification devices with a fuel cell (FC) and an electrolyzer with a solid polymer electrolyte. METHODS. For the melting of samples of intermetallic compounds (IMC), the method of melting in an electric arc furnace with a non-consumable tungsten electrode on a water-cooled copper crystallizer in an argon atmosphere is used. The study of the integral characteristics of metal hydride devices and the study of the processes during the extraction of hydrogen from a mixture of gases is carried out using thermal mass flow meters and a thermoconductometric gas analyzer. RESULTS. The results of the development and creation of metal hydride reactors for the storage and purification of hydrogen of various types are presented. The results of experimental studies of the system integration of metal hydride reactors, fuel cells, and an electrolyzer are presented. CONCLUSION. The accumulation of energy in hydrogen makes it possible to use the lowest possible gas pressure in the reactor, thereby obtaining the maximum safety during operation of the device, as well as avoiding mandatory safety certification and training of personal personnel on working with high-pressure cylinders. The use of the metal hydride method of flow purification shows high rates of hydrogen extraction for subsequent accumulation and use in the fuel cell at high volume hydrogen contents in the mixture (≥10% vol.), while the method of periodic evacuation of accumulated impurities is most effective at low hydrogen contents in the mixture (<10% vol.). Experimental power plants H>2Bio and H2Smart with an electric power of 200 W and 1 kW are developed, the results of the main operating modes of power plants are presented.

161-172 408
Abstract

THE PURPOSE. To analyze the current state and prospects for the hydrogen energy development. To consider the possibility of implementing a project aimed at producing hydrogen on the territory of the Republic of Crimea. To choose a suitable location for the facility construction. To provide for the use of renewable sources to supply consumers of the facility with electricity. To study the existing methods of obtaining hydrogen in order to select the suitable one for use on the territory of the Republic of Crimea. To calculate the amount of electricity generated by the selected source and consumed by the elements of the hydrogen production system. To determine the cost of the project and its payback period. METHODS. The method of calculating the amount of electricity generated by the source, as well as the method for determining the cost of project implementation and payback based on data from open sources were used to achieve the set goals. In this work, a simulation of a facility consisting from an electricity source – a solar power plant with an installed capacity of 110 MW, a hydrogen production system – an electrolyser with a capacity of 50 MW, a seawater desalination system – a reverse osmosis unit with a capacity of 600 tons of water per day was performed. Various types of electrolysers were analyzed. RESULTS. The balance of energy generated and consumed by the elements of the hydrogen production system was determined. The capital costs of implementation and the annual operating costs of the project were calculated. CONCLUSHION. The recoupment of such a project, according to preliminary estimates, will be from seven to eight years with a capital investment of about five billion rubles.

173-180 395
Abstract

THE PURPOSE. To consider the trends in the field of hydrogen energy through the prism of political science. To describe the main trends and political implications for decarbonizing energy and building a carbon-neutral economy with a special role for hydrogen. To refer to the key sectoral documents of the European Union and Russia in the field of hydrogen energy in order to assess the ongoing changes and assess the prospects for Russian energy policy, taking into account the fact that Russia is one of the main suppliers of hydrocarbons, primarily natural gas to Europe. METHODS. In solving this goal, we applied a research approach and analytical technique - the method of discourse analysis of strategic documents, scientific publications and mass media. RESULTS. The article describes the relevance of the topic, considers the decarbonization policy as the most important driver of the energy transition, where it is about hydrogen as the dominant energy carrier in the world, and monitoring studies of the World Energy Council and the International Renewable Energy Agency. The study analyzes the strategic documents of the European Union and Russia in the field of hydrogen energy. CONCLUSION. In the long term, the role of hydrogen in the global energy system may be comparable to the role currently played by gas and coal. The “green” agenda in the global energy associated with decarbonization and building carbon-neutral economies with a special role for hydrogen is not only new challenges, but also new opportunities for Russia's energy policy.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)