Preview

Power engineering: research, equipment, technology

Advanced search
Vol 22, No 1 (2020)
View or download the full issue PDF (Russian)

POWER ENGINEERING

3-9 756
Abstract

High performance cleaning of a gas stream of solids of small diameter at small pressure losses in the device is one of key indicators at the choice of the abstersive device. In article, the rectangular separator developed by authors for efficient cleaning of gas emissions of boiler installations of solids is offered. The comparative analysis of a separator with the cyclone СN-11-400 is made. The dependence of hydraulic resistance coefficient from dimensionless geometric factor, it determined the global minimum and the ratio of beam separation elements, which are achieved with minimal energy costs. Results on the efficiency of the proposed separation device are obtained for different values of the length of I-beam elements. In particular, it is shown that with a decrease in the length of I-beam elements, the efficiency of separation of small-diameter particles increases. As a result of the numerical experiment, it was determined that when the length of I-beam elements is equal to 13 mm, the highest efficiency is achieved. At a volume flow rate of Q = 0.444 m3/s, the efficiency of the separator is on average 52% higher than that of the cyclone CN-11-400 when separating gas from particles up to 8 microns in diameter.

10-17 708
Abstract

The article presents the results of a single-purpose optimization of the composition of the hybrid complex consist of the wind-solar and diesel power plants, according to the criterion of the minimum cost of electricity for a small settlement in given geographical conditions. An estimation of the impact of an additional criterion for the total investment cost limitation on a result of solving an optimization problem is given. It is shown that the ratio of the proportions of the solar and wind power plants is not constant when total investment cost changes and it changes to the exclusion of one of the renewable energy sources from the complex.

18-27 541
Abstract

The set of characteristics that determine the power quality (PQ) can be used to describe the state and efficiency of the power supply system in terms of the influence of electromagnetic interference. The impact of electromagnetic interference on electrical equipment is manifested in the reduction of uptime, additional losses of active power, data loss, etc. The most common sources of interference in modern conditions are consumers with non-linear volt-ampere characteristics. This type of electrical receivers creates a distortion of the current and voltage waveform. In view of the widespread use of these power consumers in daily life and industry, special attention should be paid to the problems of harmonic distortion. This article presents the results of measurements and analysis of the quality of electricity, and also shows the effect of applying an active filter (AF) to ensure the quality of electricity in the distribution network (66/20 kV) of the city of Lattakia in the Syrian Arab Republic. The definition of the optimal capacitance of the AF dc link using the particle swarm method is given in order to minimize the total non- sinusoidal current and voltage in the studied electrical network.

28-37 470
Abstract

The aim of this work is to reduce the cost of the heat pump heating system by using a solar collector in the primary circuit of the heat pump. It is known that the price of material and installation of the primary circuit collector is 30% of the total cost of the heat pump heating system. The use of a solar collector in the primary circuit of a heat pump eliminates the need for drilling or underground installation of a low-potential thermal energy collector. The rejection of the classic types of collectors: horizontal collectors and vertical probes, also has a positive environmental effect on the soil. The combined use of a solar collector and a heat pump will add variability in the layout of the heat pump heating system. The article presents the results of a theoretical study of the feasibility of operating solar collectors at the latitudes of the Republic of Tatarstan. A comparative analysis of various types of heat pump and solar collector is given, based on which the main components of the combined system were selected. The work includes calculations of the required power and surface area of the absorption of the solar collector. The results of a comparative analysis of the performance of the solar collector are presented, depending on the angle of incidence of sunlight and the average level of insolation. As a result of the work, it was determined that the use of a solar collector in the primary circuit of a heat pump will be twice cheaper compared to horizontal collectors and 4 times compared to vertical probes.

38-48 507
Abstract

One of the current trends at present is the development of small energy, which is a particularly urgent task for the Russian Federation with its vast territories and the specifics of the electric power system. In the Russian Federation, the bulk of the electricity is generated at large power plants and transmitted through power lines. 60–70% of the country's territory lacks a centralized power supply, where more than 20 million people live, and the development of small and micro-energy facilities is necessary.

Using a synchronous electric reciprocating machine with permanent magnets in power plants of a modular type makes it possible to rationally design an autonomous power supply source, to obtain the most optimal design.

The development of methodological design decisions and the optimization of engine design parameters as part of generating and drive complexes is an important scientific task.

A mathematical description of thermodynamic processes in a free-piston internal combustion engine, electromechanical and thermal processes occurring in a synchronous electric reciprocating machine with permanent magnets is developed, which is a necessary condition for designing and optimizing the design of an autonomous electric power complex.

According to theoretical calculations, in the Matlab application, on the basis of the additional Simulink module, a simulation model of a free-piston internal combustion engine, linear current load calculation units, stator magnetic induction, magnetic induction created by permanent inductor magnets, electromagnetic force were developed and calculated.

The created procedure for calculating the parameters of the electromagnetic component of the force of a synchronous machine with permanent magnets allows you to calculate and optimize the design parameters of the inductor and stator element of the electric motor under consideration. Thus, this will allow us to design electric machines with improved energy characteristics, due to the use of the obtained simulation results, which will allow us to use them more efficiently in the composition of generating and drive complexes.

49-57 860
Abstract

The fouling of heat exchange equipment leads to serious economic losses in many industries, therefore to find a method to reduce deposits on heat transfer surfaces remains an actual task. In this paper, a practical solution is proposed for the implementation of a pulsating cleaning method of oil coolers as an example. The influence of pulsations on cleaning of the external surface of the heat exchanger is studied by computer modeling with Ansys Fluent. The fluid flow was described by the Navier-Stokes equation, particle motion and their interaction was described by the discrete element method (DEM). In the study, a staggered tube bundle was considered. The pulse frequency 0,3125 Hz, the amplitude referred to the diameter of tube is 35, the Reynolds number 100, the duty cycle of the pulsations 0,25. Oil was chosen as the medium. Evaluation of the pulsating cleaning method was carried out on the basis of the analysis of the mechanics of particle collisions on the surface of the central cylinder in the beam, with stationary and pulsating flow. It was found that the pulsating flow helps to reduce deposits in the front of the cylinder and is not effective in the back. An analysis of the mechanics of particle impact on the heat exchange surface showed that this pulsation mode is more effective for removing plastic deposits.

58-68 803
Abstract

The aim of the paper is theoretical and experimental research of processes during the single-phase ground faults in electrical distribution grids of 10/06/35 kV with isolated neutral mode. The mathematical method of rationing is used for the analysis of the spectral composition of currents and voltages increasing the information content of the allocated higher harmonics of current and voltage. The paper show a comparison of the results of spectral analysis with and without taking into account the mathematical rationing obtained on the simulation model. Field experiments have demonstrated the effectiveness of using of the method of mathematical rationing of the higher harmonic components of current and voltage for various types of single-phase ground faults. The results of field experiments provided an opportunity of improving the methodology of yearling detection of single-phase ground faults in electric grids of 6-10-35 kV with an isolated mode of neutral. The conclusion of the research is the possibility of a significantly more accurate selection of the resonant frequencies of the spectrum of currents and voltages obtained by using of the method of mathematical rationing. The possibility of earlier and more precise localization of the feeder with ground fault is shown on the base more precise selection of the resonant frequency currents and voltages.

69-76 717
Abstract

Improving energy efficiency and reducing the cost of creating an electrical complex of autonomous power supply for an oil-producing enterprise is an urgent problem and requires a rational solution. The goal is the construction of energy-efficient electrical systems of autonomous power supply for oil-producing enterprises, leading to a reduction in the unit cost of electricity per unit of production. A methodology for constructing an autonomous power supply system for an oil producing enterprise, optimized in length and number of generation centers is present. The results presented in the work were obtained using methods of the theory of electric and magnetic circuits, theory of electric drive, methods of optimization of power supply systems, methods of mathematical and computer modeling. The configuration of the power supply system of oil producing enterprises and the efficiency of its work is analyze. To test the efficiency of the methodology, the power supply system of an oil producing enterprise is simulate in the RTDS software package. The results of the work were introduced and used in the creation of energy-efficient electrical systems for autonomous power supply to oil-producing enterprises based on autonomous diesel generators and optimized by the length of power lines and the number of generation centers. Implementation of the results of the work allows reducing the specific energy consumption per unit of extracted products and reducing the cost of building an energy-efficient electrical complex of autonomous power supply for oil-producing enterprises.

77-84 489
Abstract

The article deals with the implementation of the new national environmental legislation, which provides for the division of all energy enterprises into 4 categories depending on the degree of negative impact on the environment, the introduction of technological rationing, implemented on the principles of the best available technologies, provided that they are technically possible to use them, and the differentiation of state regulation measures in the field of environmental protection. Within the framework of this approach, the values of the total index of harmfulness (toxicity) of combustion products formed during the burning of Berezovsky coal of the B2 grade (enrichment class P) were determined by numerical experiments in order to assess the impact on the environment of emissions from low-power boilers KE-25-14C. The total emission hazard index is determined by taking into account the contribution of specific hazard indicators of combustion components represented by nitrogen oxides, sulfur dioxide, carbon monoxide, ash particles, vanadium pentaoxide and benz(a)pyrene. The private contribution of the considered pollutants to the total toxicity of emissions in the implementation of combustion regimes with moderate and large chemical underburning of fuel is established. Practical recommendations are given for using the results of the study as input data for setting technological standards for boilers of thermal power plants in the process of approval and obtaining a comprehensive environmental permit, and for developing a program to improve the environmental efficiency of energy enterprises.

85-92 590
Abstract

Methods of the electrical energy (EE) with the required quality provision in conditions of limited financial opportunities in the power supplying companies (PSC) are being discussed considering the foreign countries experience. It is proposed to develop and apply tariffs differentiated by the degree of EE reliability and quality, in compliance with the EE quality required for definite consumers.

As a result, both consumers and PSC may get the best of tariffs application differentiated by the quality level. Consumers with power receiving appliances not demanding the high quality of EE will gain profit from payment reduction, whereas the consumers with power receiving appliances demanding the high quality of EE – from successful operation of electrical appliances, increase of their operating time and high quality of manufactured products provision. PSC acquire incentives for EE quality management upon the consumers’ request, as well as opportunities of more efficient use of financial resources directed at different quality EE provision to the consumer.

93-102 500
Abstract

The asymmetrical distribution electric network is considered in the conditions of functioning of the automated meter reading and control system (AMRCS). The problem of identification of its mathematical model in a complex form which comes down to definition of phase shifts of the variables (currents, tension) defining an electric status of three-phase network is formulated. The method of its solution based on the mathematical ratios describing functional communications between state variables and use of algorithms of parameter optimization is offered. The realization of identification procedure of model of a distribution network is enabled with direct use of the basic data obtained on communication channels from subscriber's meters of the electric power. The method can be used for a solution of a number of functional tasks as a part of the AMRCS oriented for diagnostics of statuses of a trunk line and energy losses in a distribution network.

103-112 458
Abstract

Forecasting the demand for thermal energy by energy complexes of buildings and structures is an urgent task. To achieve the necessary accuracy of the calculation, it is customary to use various deterministic methods based on the available changing and slightly changing data about the object of study. At the same time, statistical data can also be used in analysis by stochastic methods. The purpose of this article is to analyze the question of the admissibility of combining deterministic and stochastic approaches in order to increase the accuracy of the calculation. Formulas for calculating the components of the expenditure part of the heat balance are shown on the example of a building for water sports. Based on the above formulas, a calculation with a monthly discretization in the period from January 2009 is carried out. until January 2019. An example is given of calculating the accuracy of the forecast of demand for thermal energy through multivariate regression analysis and the use of artificial neural networks. Based on the same data, an artificial neural network was trained on seven different factors: six independent and seventh — the idealized value of the building’s heat loss through the building envelope. An example of the analysis of a building for practicing water sports shows the inadmissibility of the described approach if the same initial data are used in the deterministic and stochastic method. Results: the accuracy of the forecast made using regression analysis increases with an increase in the number of factors. However, the use of an additional group of factors in the stochastic method, for example, which are numerically processed climate data that are already used as initial data, will lead to an unreasonable overestimation of the significance of the twice used factor. The presence in the predictive models using artificial neural networks of collinearity and multicollinearity of variables does not negatively affect the forecast. Conclusion: the combination of the deterministic and stochastic approaches in preparing the predicted heat balance by using only the same input data that is used in the stochastic approach in the deterministic approach is unacceptable.

113-127 593
Abstract

The high costs of qualified liquid fuels in remote areas of Siberia and the Far East, as well as significant stocks of wood biomass in these areas determine the relevance of the presented studies. The integrated processing of woody biomass into synthetic liquid fuel and electricity will increase the energy and economic efficiency of processing technological waste, as well as improve the environmental situation in these areas.

The aim of the work is technical and economic optimization of parameters modular installations of the combined production of electricity and methanol from woody biomass.

The article presents an analysis of previously performed work on the topic of research and, based on them, selected one of the most effective ways to process wood biomass - oxidative conversion of this raw material to produce gas enriched in hydrogen and carbon oxides, synthesis of qualified liquid fuels and generating electricity when burning purge gas synthesis process.

The technological scheme of modular plants for combined biomass-based production of electricity and synthetic liquid fuel, its mathematical model of its elements and the scheme as a whole are given. On the basis of the selected methods, optimization studies of the operation of a modular energy technology installation were carried out.

Analysis of the results showed that the combined production of electricity and methanol based on biomass increases the thermal efficiency of the process by 12% and reduces investment by 15-20% compared with separate production. With an internal rate of return of capital of 15%, the cost of methanol from biomass will be 275-317 dollars per ton. At such a cost, methanol can compete with both boiler-furnace and motor fuels in the eastern regions of Russia.

ELECTRICAL ENGINEERING

128-135 723
Abstract

The article provides an overview of the current state of energy in the world and in Russia, which focuses on the development of renewable energy sources (RES). An analysis is made of the trend in the production and consumption of energy resources, as well as an assessment of the use of renewable energy in Russia. Incentives for the development of renewable energy sources with the characteristics available in the world are determined. Conclusions are drawn about the importance of developing this industry both in Russia and in the Chechen Republic, as one of its regions. An assessment is given of the development of wind and solar energy in Russia. The current power supply structure of the Chechen Republic is considered, where the indicators of maximum electric power, consumed electric power, and also electric power generation of the republic are given. The analysis of the possibility of using wind and solar energy resources, as well as small hydropower of the Chechen Republic. Options for the development and effective use of renewable energy sources are considered, taking into account the fact that the use of energy resources based on modern innovative technologies, the introduction of new promising alternative sources, and the search for ways to stimulate the use of renewable energy sources, where it is supposed to organize and introduce a tariff policy, is one of the main tasks of energy development which give a complete systemic idea of the scale of the problem of transferring the energy system to innovative rails. Some options are proposed for the most expedient development of the energy system of the Chechen Republic, the construction of small pilot plants using renewable energy sources, with the goal of actual (experimental) confirmation of the predicted calculated values, as well as the gradual mass introduction of plants using renewable energy sources in the private sector with the creation of the necessary tariff conditions for use and construction installations on an industrial scale within the framework of energy private or public companies. Priority tasks have been set for the prospective development of the republic’s energy sector by introducing renewable energy sources.

136-144 457
Abstract

The application of autonomous electrical complexes with parallel diesel generator sets based on synchronous generators is considered. The problem of the existence of exchange power fluctuations in such technical systems is described. A mathematical model has been developed that allows conducting research of an autonomous electrical complex. It is proposed to implement graphical visualization of the dependence of the amplitude of power exchange fluctuations on time constants in the speed control circuits of diesel generators in the form of configuration maps. An example of using the proposed method for a specific electrical complex is given. The possibility of reducing the amplitude of exchange power fluctuations by reducing the values of time constants of frequency control circuits is justified, which is the basis of a new method for eliminating exchange power fluctuations and makes it possible to improve the method, which is based on changing the transmission coefficients of frequency regulators.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-9903 (Print)
ISSN 2658-5456 (Online)