POWER ENGINEERING
Currently, there is an increase in power flows along power lines. An important task for the development of the power grid complex is to increase the current-carrying capacity of existing power lines. The use of advanced conductors has become a successful technical solution for this purpose. "New generation conductors" are modern conductors that have advanced mechanical and electrical properties and characteristics. Thus, it has become important to have information about the maximum operation temperature and current limits of the overhead line with new conductors. The approximate current-carrying capacity in Amperes is the value of current at which the conductor temperature reaches its maximum permissible value. It determines the maximum current load of overhead power lines. For traditional steelaluminum conductors, there are several methodological approaches to determining the maximum current load. This fact complicates the definition of an approach to calculating the current carrying capacity for advanced conductors. Nevertheless, the general basis of all methodological approaches is the thermal balance of the conductor. The purpose of this article is to assess the possibility of adapting the method of calculating the approximate currentcarrying capacity of traditional conductors to the calculation of advanced conductors. The article deals with advanced conductors of various brands of comparable cross-section with the classic ACSR 240/39. This work provides information about the selected conductors, their characteristics and design features. The paper shows a mathematical model for calculating the approximate current-carrying capacity of a conductor and shows calculating results for selected conductors. According to the results of analysis and calculations, the adaptation of the presented mathematical model is possible if we refine its parameters and coefficients.
A gas turbine installation (GTI) consists of 5 main parts: an input device, a compressor, a combustion chamber, a gas turbine, and an output device. In this work, due to the lack of sufficiently extensive information about stationary GTI, data from the characteristics of aviation GTI were partially used. The GTI operation efficiency is influenced by many factors, among which, apparently, the determining factor is the degree of air compression in the compressor π К . Of course, the compression ratio depends on the design scheme of the gas turbine, the type of fuel, the climatic conditions of operation, and others. The most important operational parameter of the GTI is the effective power NP and specific fuel consumption bud . The article provides a numerical analysis of the effect π К on NP and bud under variations in the temperature of gases at the turbine inlet T3 , as well as the influence of other factors, including the selection of part of the air for cooling high-temperature surfaces of the structure. The conclusions were made based on the calculations, the results of which are shown in the tables, and in the comparison graphs of obtained results.
The issues of saving fuel and energy resources, as well as improving the equipment efficiency, are of great importancei n all sectors and especially in the energy sector, the main fuelconsuming industry. Improving of the boiler plants efficiency and is currently an urgent issue. Organizational and technical measures to improve technological processes are being developed at each station. The article discusses several ways to improve the boiler plants efficiency using liquid fuel. Industrial tests of the diesel nozzle cleaner in the boiler plant were carried out, which led to the following results: - received fuel consumption savings of 8.67%. At the same time, the amount of heat transferred to the LTC-4 network increased by 5.86%. - the specific indicator of fuel consumption (the ratio of diesel fuel consumption to the amount of heat transferred, kg / Gcal) decreased by 12.57%, and also at the same time as the efficiency of the boilers, the resource indicators of the boiler nozzles will increase, the time and the costs for the nozzles technical inspection will decrease.
Based on a critical analysis of the existing characteristics of an ideal gas and the theory of thermodynamic potentials, the article considers its new model, which includes the presence of an ideal gas in addition to kinetic energy of potential (chemical) energy, in the framework of which the isothermal and adiabatic processes in it are studied both reversible and irreversible, in terms of changes in the entropy of the system in question, observed in case. In addition, a critical analysis was made of the process of introducing the concept of entropy by R. Clausius, as a result of which the main requirements for entropy were established, the changes of which are observed in isothermal and adiabatic quasistatic processes, in particular, it was revealed that if in isothermal processes involving one in a perfect gas, the entropy ST is uniquely characterized by the value , regardless of whether the process is reversible or not, then when the adiabatic processes occur, the only requirement made of them is the condition of mutual destruction adiabats in this Carnot cycle. As a result of this circumstance, in fact, in thermodynamics various “adiabatic” entropies are used, namely; const SA = const R ln V и C V ln T , and in addition, as established in this paper, CV, which leads, despite the mathematically perfect introduction of the concept of entropy for the Carnot cycle, to the impossibility of its unambiguous interpretation and, therefore, the determination of its physicochemical meaning even for perfect gas. A new concept is introduced in the work: “total” entropy of an ideal gas SS = R ln V + C V , satisfying the criteria of R. Clausius, on the basis of which it was established that this type of entropy multiplied by the absolute temperature characterizes a certain level of potential energy of the system, which can besuccessively converted to work in an isothermal reversible process, with the supply of an appropriate amount of heat, and in the adiabatic reversible process under consideration.
ELECTRICAL ENGINEERING
The article considers the state of the electric power industry functioning of the Chechen Republic. Comparative data on the reception in the network and useful electricity supply of the Chechen Republic in recent years are presented. The total transformer capacity structure of all substations, as well as the power lines total length of Chechenenergo JSC, is considered. The main electric power industry problems of the Chechen power system, which are the lack of own generating capacities, the transformer capacities shortage of substations 110 and 35 kV and the main production assets high level wear of the electric grid economy, are studied. The tasks to reduce the Chechen energy system electric energy losses are considered. The values and causes of the electric energy losses in different district electric networks (RES) of JSC "Chechenenergo" are determined. A comparative analysis of the electrical energy losses in recent years has been performed. Issues related to reactive power in electrical networks are considered. An analysis was carried out to determine the reactive power values in different district electric networks of Chechenenergo JSC. Measures are proposed that contribute to the reactive power normalization and the improvement of technical and economic indicators in electric networks. The networks electrical circuits improvement analysis was carried out to ensure the power supply stability and reliability to consumers in the republic. The production process control system and diagnostics is proposed, which will allow to regulate and coordinate the activities to manage the technical condition, as well as the power system reliability.
The article is concerned with a complex investigation of the influence of the plane wave coupling with a certain function of time, incident direction and polarization to a linearly loaded transmission line network comprised of three single-wire conductors with different lengths connected in the center. Line load is represented as 50 Ω resistors connected to all terminations of the transmission line network. The exemplary network was modeled on a computer and experimentally investigated in a gigahertz transverse electromagnetic GTEM cell, which allows creating an electromagnetic field of a certain direction. The coupled voltage at the terminals of the network was investigated in the frequency and time domains. To conduct an experiment in the frequency domain, both to create an electromagnetic field inside the GTEM camera and to measure the induced voltage at the terminations of the network, a vector network analyzer VNA was used. To conduct an experiment in the time domain for the sake of creating an electromagnetic field, a high-voltage voltage generator was used, whereas a strobing oscilloscope was used to measure the induced voltages. The simulation was performed in the LTspice software - a tool for calculating electrical and electronic circuits, and Matlab. It is also examined to show the compliance with the experimental results. On the basis of obtained results, the author was able to identify the main aspects that may be useful in modeling and predicting the electromagnetic processes occurring in linearly loaded conductors, power supply and / or data transmission systems.
Improving energy efficiency and reducing the costs of creating an autonomous power supply complex for an oil production enterprise is an urgent problem and requires a rational solution. At each stage of the electrical complex development of the oil production enterprise, the purpose is to increase energy efficiency in order to reduce the unit cost of electricity per unit of produced well fluid volume. The electrical complex energy efficiency assessment of the oil production enterprise can be determined by the classical methodology of the energy balance. The task of increasing the energy efficiency of the electrical complex with an autonomous power supply system is to ensure a minimum of fuel costs while maintaining current oil production. Two types of the electrical complex models are proposed: with an individual electricity source and a generation center based on individual diesel generators. A method for calculating the energy parameters of the electrical complex components with installations of different types of pumps is presented. In this case, the energy efficiency is improved due to joint deep and group reactive power compensation and power factor correction by reducing the harmonic components of the current. The electrical complex simulation of a submersible electric motor has been carried out in order to determine the values of voltage and current during switching processes. The autonomous power supply system modeling of an oil production enterprise in case of voltage losses and the simulation of diesel generators with a frequency deviation of the generated voltage during load surges was carried out.
INSTRUMENT-MAKING, METROLOGY AND INFORMATION-MEASURING INSTRUMENTS AND SYSTEMS
Pseudorandom signals of nonlinear dynamical systems are studied and the possibility of their application in information systems analyzed. Continuous and discrete dynamical systems are considered: Lorenz System, Bernoulli and Henon maps. Since the parameters of dynamical systems (DS) are included in the equations linearly, the principal possibility of the state linear control of a nonlinear DS is shown. The correlation properties comparative analysis of these DSs signals is carried out.. Analysis of correlation characteristics has shown that the use of chaotic signals in communication and radar systems can significantly increase their resolution over the range and taking into account the specific properties of chaotic signals, it allows them to be hidden. The representation of nonlinear dynamical systems equations in the form of stochastic differential equations allowed us to obtain an expression for the likelihood functional, with the help of which many problems of optimal signal reception are solved. It is shown that the main step in processing the received message, which provides the maximum likelihood functionals, is to calculate the correlation integrals between the components and the systems under consideration. This made it possible to base the detection algorithm on the correlation reception between signal components. A correlation detection receiver was synthesized and the operating characteristics of the receiver were found.
Modern trends in the development of technology are based on the need for experimental studies of the equipment being developed in laboratory conditions with the maximum approximation of the operating modes to real ones. Such studies are impossible without the development of specialized stands with test automation systems. Automation of processes involves the organization of measuring channels as part of a stand using analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), digital-todigital conversion (DDC) and the development of a hardware-software complex (HSC) based on high-speed computing devices. As part of the project to create new high-tech equipment, the specialists of FSBEI HE “KSPEU” and JSC “ChEAZ” developed and created an experimental stand designed to verify and confirm the correctness of the selected structural and circuit solutions used in the design of a synchronous valve electric motor (SVEM) and rod control station borehole pumping unit (RC SBPU). The object of experimental research was the prototype and prototype electric drives of oil pumping units, as well as their components: SVEM and RC SBPU. The article discusses the ways of organizing the measuring and control channels of the measuring and information system of the experimental bench, which allows to study samples of synchronous valve motors and control stations of the sucker rod pump unit in the regimes that are as close as possible to real field conditions simulating the operation of the oil pumping unit of the sucker rod pump unit. Thus, in the experimental stand, analog, discrete and digital control and control channels are implemented.
The paper considers the use of arsenic organic compounds as selective sorbents for the separation and analysis of complex organic mixtures. Based on the chromatographic factors of polarity, it was found that the studied sorbents range is characterized by high hydroxyl selectivity of the analyzed sorbates separation, due to the arsenyl oxygen presence in the structure of their molecule, which has an unshielded electron pair. It is shown that the functional substituents in the structure of the arsenic sorbents molecule have a direct effect on the chromatographic factors of polarity, the values of which increase when the functional substituents in the the phenyl ring (para-position) are introduced into the structure of the molecule. It was found that relatively low values of the chromatographic polarity factor (x) are observed for benzene, which also increases in the para-position of the ring. Based on the five-dimensional space and projection on the plane corresponding to the chromatographic factors of polarity, arsenic sorbents with extreme characteristics that have higher chromatographic factors of polarity (y) in comparison with known analogues were identified. Based on the conducted research, it was found that arsenic sorbents show high separation selectivity of aliphatic alcohols from hydrocarbons. Thus, when developing specific methods for the analysis of complex alcohol-hydrocarbon mixtures, we propose to use arsenic compounds as selective sorbents intended for the separation and analysis of substances capable of forming intermolecular hydrogen bonds under gas-liquid chromatography. At the same time, their retention times are higher than similar characteristics of non-polar compounds. This allows you to separate the analyzed components with close retention times.
The deposits formation on heat exchange surfaces is an important problem in the thermal power industry. Since the thermal conductivity coefficient of deposits has low values, even a small layer of them creates a large thermal resistance. Deposits on the heat exchange equipment surfaces reduce the heat transfer coefficient, heat transfer efficiency, and lead to significant energy losses. To restore the operation design mode, such heat exchangers must be decommissioned and contaminated surfaces must be cleaned. Energy losses can be reduced if deposits on heat exchange surfaces are detected in a timely manner. The paper discusses a method for controlling deposits thickness on heat exchange surfaces. The method is based on the damping parameters analysis of the controlled product free vibrations. The research was carried out on models of the heat exchange equipment surfaces-steel plates 400x160x2 mm, with different deposits thickness 1 During studying of the acoustic characteristics, the natural vibrations frequencies were determined tenfold with each type of plate. Signal processing occurs in a program that allows you to receive and record data from an audio device, calculate the signal amplitude spectrum in the time domain, and return it as a value and phase (receiving the frequency spectrum). The Wilcoxon rank sum was used to determine the spectrum changes dynamics. The researches have shown that the free vibrations method allows us to determine not only the presence of deposits on the heat exchange surfaces, but also their thickness.
The enhancement of the measuring instruments accuracy has always been the most crucial task for engineers and scientists. In particular, in the field of nuclear magnetic resonance, the creation of uniform magnetic field often defines the results of measurements, therefore the main task of this study is to develop Halbach magnet array based on design characteristics of developing NMR-analyzer. The research describes the development process of the main sensor’s magnetic system components for continuous-flow portable NMR-analyzer. The scientific paper makes a different variations analysis of Halbach magnet arrays on the degree of the magnetic field homogeneity, shows the process of development and production of the 3D-framework for Halbach magnet array for NMR-analyzer. The article also gives information on the design of quartz generator based on Pierce oscillator circuit for receiver-transmitter coil of the NMR-analyzer’s sensor. The results could be useful for the magnetic sensors design with high degree of homogeneity, measuring instruments and devices using the method of nuclear magnetic resonance in its foundation.
ISSN 2658-5456 (Online)